3 Mg, 0 Fe2O3, 3MgO, 2 Fe
ionic bond is formed between ca and cl forming molecule cacl2 ca has 2 velancy and cl has one velancy (ca has 2 electrons in its outer most shell while cl has 1 electron vecancy in its outermost shell). So ca would make bond with 2 cl atoms
Answer:
The answer is in the explanation.
Explanation:
The KHP is an acid used as standard in titrations to find concentration of bases as NaOH.
The reaction that explain this use is:
KHP + NaOH → KNaP + H2O
<em>where 1 mole of KHP reacts per mole of NaOH</em>
That means, at equivalence point of a titration in which titrant is NaOH, the moles of KHP = Moles of NaOH added
With the moles of KHP = Moles of NaOH and the volume used by titrant we can find the molar concentration of NaOH.
The moles of KHP are obtained from the volume and the concentration as follows:
Volume(L)*Concentration (Molarity,M) = moles of KHP
If the concentration is more or less than 0.100M, the moles will be higher or lower. For that reason, we need to know the concentration of KHP but is not necessary to be 0.100M.
Answer is: gamma emission or gamma decay.
<span>During gamma emission the nucleus emits radiation without changing its composition, if for example have nucleus with six protons and six neutrons (carbon atom) and after gamma decay there is nucleus with six protons and six neutrons.
</span>Gamma rays are the
electromagnetic waves with the shortest wavelengths (1 pm), highest
frequencies (300 EHz) and highest energy (1,24 MeV).
Answer:
Osmotic pressure is a measure of a solution's tendency to attract or take in water from another solution when the two solutions are separated by a semipermeable membrane
The order of increasing osmotic pressure is
- 0.7% KCl
- 1.5% KCl
- 1.8% KCl
- 5.0% KCl
- 8.6% KCl
Explanation:
Osmotic pressure is the strength of movement of the solvent of a solution through a semipermeable membrane separating solutions of different concentration thereby causing the solvent (such as water) to move from a region of high solute concentration to a region of lower solute concentration.
The amount of osmotic pressure through a semipermeable membrane separating solutions of different concentration is given by
π = i×M×R×T
π = osmotic pressure
i = van't Hoff's factor
(M) = molar concentration
(T) = temperature in kelvin
R = ideal gas constant (0.08206 L atm mol⁻¹K⁻¹)
As seen above , the osmotic pressure is directly proportional to the concentration of the solution thus in the order of increasing osmotic pressure we have
- 0.7% KCl
- 1.5% KCl
- 1.8% KCl
- 5.0% KCl
- 8.6% KCl