Answer:
The half-life of the radioactive isotope is 346 years.
Explanation:
The decay rate of the isotope is modelled after the following first-order linear ordinary differential equation:
![\frac{dm}{dt} = -\frac{m}{\tau}](https://tex.z-dn.net/?f=%5Cfrac%7Bdm%7D%7Bdt%7D%20%3D%20-%5Cfrac%7Bm%7D%7B%5Ctau%7D)
Where:
- Current isotope mass, measured in kilograms.
- Time, measured in years.
- Time constant, measured in years.
The solution of this differential equation is:
![m(t) = m_{o}\cdot e^{-\frac{t}{\tau} }](https://tex.z-dn.net/?f=m%28t%29%20%3D%20m_%7Bo%7D%5Ccdot%20e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%7D%20%7D)
Where
is the initial mass of the isotope. It is known that radioactive isotope decays at a yearly rate of 0.2 % annually, then, the following relationship is obtained:
![\%e = \frac{m(t)-m(t+1)}{m(t)}\times 100\,\% = 0.2\,\%](https://tex.z-dn.net/?f=%5C%25e%20%3D%20%5Cfrac%7Bm%28t%29-m%28t%2B1%29%7D%7Bm%28t%29%7D%5Ctimes%20100%5C%2C%5C%25%20%3D%200.2%5C%2C%5C%25)
![1 - \frac{m(t+1)}{m(t)} = 0.002](https://tex.z-dn.net/?f=1%20-%20%5Cfrac%7Bm%28t%2B1%29%7D%7Bm%28t%29%7D%20%3D%200.002)
![1 - \frac{m_{o}\cdot e^{-\frac{t+1}{\tau} }}{m_{o}\cdot e^{-\frac{t}{\tau} }}=0.002](https://tex.z-dn.net/?f=1%20-%20%5Cfrac%7Bm_%7Bo%7D%5Ccdot%20e%5E%7B-%5Cfrac%7Bt%2B1%7D%7B%5Ctau%7D%20%7D%7D%7Bm_%7Bo%7D%5Ccdot%20e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%7D%20%7D%7D%3D0.002)
![1 - e^{-\frac{1}{\tau} } = 0.002](https://tex.z-dn.net/?f=1%20-%20e%5E%7B-%5Cfrac%7B1%7D%7B%5Ctau%7D%20%7D%20%3D%200.002)
![e^{-\frac{1}{\tau} } = 0.998](https://tex.z-dn.net/?f=e%5E%7B-%5Cfrac%7B1%7D%7B%5Ctau%7D%20%7D%20%3D%200.998)
![-\frac{1}{\tau} = \ln 0.998](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B%5Ctau%7D%20%3D%20%5Cln%200.998)
The time constant associated to the decay is:
![\tau = -\frac{1}{\ln 0.998}](https://tex.z-dn.net/?f=%5Ctau%20%3D%20-%5Cfrac%7B1%7D%7B%5Cln%200.998%7D)
![\tau \approx 499.500\,years](https://tex.z-dn.net/?f=%5Ctau%20%5Capprox%20499.500%5C%2Cyears)
Finally, the half-life of the isotope as a function of time constant is given by the expression described below:
![t_{1/2} = \tau \cdot \ln 2](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%20%3D%20%5Ctau%20%5Ccdot%20%5Cln%202)
If
, the half-life of the isotope is:
![t_{1/2} = (499.500\,years)\cdot \ln 2](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%20%3D%20%28499.500%5C%2Cyears%29%5Ccdot%20%5Cln%202)
![t_{1/2}\approx 346.227\,years](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%5Capprox%20346.227%5C%2Cyears)
The half-life of the radioactive isotope is 346 years.