Answer:
I don't know the answer of this question.
Only take on certain discrete values of energy. This contrasts with classical particles, which can have any energy. These discrete values are called energy levels. The term is commonly used for the energy levels of electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized
Answer: -
12.59
Explanation: -
Strength of NaOH = 0.0179 M
Volume of NaOH = 58.0 mL = 58.0/1000 = 0.058 L
Number of moles = 0.0179 M x 0.058 L
= 1.04 x 10⁻³ mol
Mol of [OH⁻] given by NaOH = 1.04 x 10⁻³ mol
Strength of Ba(OH)₂ = 0.0294 M
Volume of Ba(OH)₂ = 60.0 mL = 60.0/1000 = 0.060 L
Number of moles = 0.0294 M x 0.060 L
= 1.76 x 10⁻³ mol
Mol of [OH⁻] given by Ba(OH)₂ =2 x 1.76 x 10⁻³ mol
Total [OH⁻] = 1.04 x 10⁻³ mol + 2 x 1.76 x 10⁻³ mol
= 4.56 x 10⁻³ mol
Total volume of the mixture = 58.0 + 60.0
= 118.0 mL
118.0 mL of the solution has 4.56 x 10⁻³ mol [OH⁻]
1000 mL of the solution has 
= 0.0386 mol
Using the relation
pOH = - log [OH-]
= - log 0.0386
= 1.41
Using the relation
pH + pOH = 14
pH = 14 - 1.41
= 12.59
Answer:
A. 0.31 mol NaNO2
Explanation:
Buffer solutions are the solutions that resist changes in pH on addition of small amount of acid or base.
Buffer solutions usually contain the mixture of a weak acid and its salt, or a weak base and its salt.
Among the options listed in the question, only NaNO2 is the salt formed from the nitrous acid.
It is a mixture Beer is a homogeneous mixture (liquid solution) of H2O, C2H5OH, and a few other substances. (There is no beer molecule. The molecule that gives beer its inebriating property is ethanol.)