Hey there!:
Molar mass H3PO4 = <span>97.9952 g/mol
Atomic Masses :
H = </span><span>1.00794 a.m.u
</span>P = <span>30.973762 a.m.u
</span>O = 15.9994 a.m.u<span>
H % = [ ( 1.00794 * 3 ) / </span> 97.9952 ] * 100
H% = <span>3.0857 %
P % = [ ( </span>30.973762 * 1 ) / 97.9952 ] * 100
P% = <span>31.6074 %
O % = [ ( </span>15.9994 * 4 ) / 97.9952 ] * 100
O% = <span>65.3069 %
Hope this helps!</span>
Answer:
E. Water Freezing
Explanation:
Entropy refers to the degree of disorderliness of a system.
A. Water Evaporating: There is an increase in entropy, this is because the phase change is from liquid to gas. Gas particles are more disordered than liquid.
B. Dry Ice sublimating: Sublimating refers to a phase change from solid to gas. This is an increase in entropy, this is because the gas particles are more disordered than solid particles
C. Water Boiling: The phase change is from liquid to gaseous state. There is an increase in entropy. Gas particles are more disordered than liquid.
D. Ice melting: The phase change is from solid to liquid state. There is an increase in entropy. Liquid particles are more disordered than that of solid.
E. Water Freezing: The phase change is from liquid to solid state. There is a decrease in entropy. solid particles are less disordered than those of liquid.
In general, if a reaction is spontaneous, the reactants possess more free energy than the products.
<u>TRUE </u>
FALSE
Answer:
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Explanation:
Mass of ethylene glycol = m = 100 g
Specific heat capacity of ethylene glycol = c = 3.5 J/g°C
Change in temperature of ethylene glycol = ΔT
Heat loss by the ethylene glycol = Q = 350 J


ΔT = 1°C
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
I believe the answer to your question is none of the above