The ratio 11:4 means that the total number of spaces is a multiple of 15 parts, this multiple is what value is assigned to each part.
450/15=30 so each part is equal to 30 spaces
Full sized car spaces are 11*30=330 spaces
Compact car spaces are 4*30=120 spaces.
You add +7 to both sides and then divide by 9 to get the x alone.
A toy cost 0.85p in January.
Step-by-step explanation:
Given,
Mark down in January = 15%
Let,
Price in December = p
Mark down in January = 15% of price in December
Mark down in January = ![\frac{15}{100}*p](https://tex.z-dn.net/?f=%5Cfrac%7B15%7D%7B100%7D%2Ap)
Mark down in January = 0.15p
Price of toy in January = Price in December - Mark down
Price of toy in January = p - 0.15p = 0.85p
A toy cost 0.85p in January.
Keywords: mark down, subtraction
Learn more about subtraction at:
#LearnwithBrainly
Answer:
![\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x=\dfrac{x}{9\sqrt{9-x^2}} +\text{C}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%5Cdfrac%7B1%7D%7B%289-x%5E2%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx%3D%5Cdfrac%7Bx%7D%7B9%5Csqrt%7B9-x%5E2%7D%7D%20%2B%5Ctext%7BC%7D)
Step-by-step explanation:
<u>Fundamental Theorem of Calculus</u>
![\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%5Ctext%7Bf%7D%28x%29%5C%3A%5Ctext%7Bd%7Dx%3D%5Ctext%7BF%7D%28x%29%2B%5Ctext%7BC%7D%20%5Ciff%20%5Ctext%7Bf%7D%28x%29%3D%5Cdfrac%7B%5Ctext%7Bd%7D%7D%7B%5Ctext%7Bd%7Dx%7D%28%5Ctext%7BF%7D%28x%29%29)
If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.
Given indefinite integral:
![\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%5Cdfrac%7B1%7D%7B%289-x%5E2%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx)
Rewrite 9 as 3² and rewrite the 3/2 exponent as square root to the power of 3:
![\implies \displaystyle \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdisplaystyle%20%5Cint%20%5Cdfrac%7B1%7D%7B%5Cleft%28%5Csqrt%7B3%5E2-x%5E2%7D%5Cright%29%5E3%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx)
<u>Integration by substitution</u>
<u />
<u />![\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctextsf%7BFor%20%7D%5Csqrt%7Ba%5E2-x%5E2%7D%20%5Ctextsf%7B%20use%20the%20substitution%20%7Dx%3Da%20%5Csin%20%5Ctheta%7D)
![\textsf{Let }x=3 \sin \theta](https://tex.z-dn.net/?f=%5Ctextsf%7BLet%20%7Dx%3D3%20%5Csin%20%5Ctheta)
![\begin{aligned}\implies \sqrt{3^2-x^2} & =\sqrt{3^2-(3 \sin \theta)^2}\\ & = \sqrt{9-9 \sin^2 \theta}\\ & = \sqrt{9(1-\sin^2 \theta)}\\ & = \sqrt{9 \cos^2 \theta}\\ & = 3 \cos \theta\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cimplies%20%5Csqrt%7B3%5E2-x%5E2%7D%20%26%20%3D%5Csqrt%7B3%5E2-%283%20%5Csin%20%5Ctheta%29%5E2%7D%5C%5C%20%26%20%3D%20%5Csqrt%7B9-9%20%5Csin%5E2%20%5Ctheta%7D%5C%5C%20%26%20%3D%20%5Csqrt%7B9%281-%5Csin%5E2%20%5Ctheta%29%7D%5C%5C%20%26%20%3D%20%5Csqrt%7B9%20%5Ccos%5E2%20%5Ctheta%7D%5C%5C%20%26%20%3D%203%20%5Ccos%20%5Ctheta%5Cend%7Baligned%7D)
Find the derivative of x and rewrite it so that dx is on its own:
![\implies \dfrac{\text{d}x}{\text{d}\theta}=3 \cos \theta](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdfrac%7B%5Ctext%7Bd%7Dx%7D%7B%5Ctext%7Bd%7D%5Ctheta%7D%3D3%20%5Ccos%20%5Ctheta)
![\implies \text{d}x=3 \cos \theta\:\:\text{d}\theta](https://tex.z-dn.net/?f=%5Cimplies%20%5Ctext%7Bd%7Dx%3D3%20%5Ccos%20%5Ctheta%5C%3A%5C%3A%5Ctext%7Bd%7D%5Ctheta)
<u>Substitute</u> everything into the original integral:
![\begin{aligned}\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x & = \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x\\\\& = \int \dfrac{1}{\left(3 \cos \theta\right)^3}\:\:3 \cos \theta\:\:\text{d}\theta \\\\ & = \int \dfrac{1}{\left(3 \cos \theta\right)^2}\:\:\text{d}\theta \\\\ & = \int \dfrac{1}{9 \cos^2 \theta} \:\: \text{d}\theta\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cdisplaystyle%20%5Cint%20%5Cdfrac%7B1%7D%7B%289-x%5E2%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx%20%26%20%3D%20%5Cint%20%5Cdfrac%7B1%7D%7B%5Cleft%28%5Csqrt%7B3%5E2-x%5E2%7D%5Cright%29%5E3%7D%5C%3A%5C%3A%5Ctext%7Bd%7Dx%5C%5C%5C%5C%26%20%3D%20%5Cint%20%5Cdfrac%7B1%7D%7B%5Cleft%283%20%5Ccos%20%5Ctheta%5Cright%29%5E3%7D%5C%3A%5C%3A3%20%5Ccos%20%5Ctheta%5C%3A%5C%3A%5Ctext%7Bd%7D%5Ctheta%20%5C%5C%5C%5C%20%26%20%3D%20%5Cint%20%5Cdfrac%7B1%7D%7B%5Cleft%283%20%5Ccos%20%5Ctheta%5Cright%29%5E2%7D%5C%3A%5C%3A%5Ctext%7Bd%7D%5Ctheta%20%5C%5C%5C%5C%20%26%20%3D%20%20%5Cint%20%5Cdfrac%7B1%7D%7B9%20%5Ccos%5E2%20%5Ctheta%7D%20%5C%3A%5C%3A%20%5Ctext%7Bd%7D%5Ctheta%5Cend%7Baligned%7D)
Take out the constant:
![\implies \displaystyle \dfrac{1}{9} \int \dfrac{1}{\cos^2 \theta}\:\:\text{d}\theta](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdisplaystyle%20%5Cdfrac%7B1%7D%7B9%7D%20%5Cint%20%5Cdfrac%7B1%7D%7B%5Ccos%5E2%20%5Ctheta%7D%5C%3A%5C%3A%5Ctext%7Bd%7D%5Ctheta)
![\textsf{Use the trigonometric identity}: \quad\sec^2 \theta=\dfrac{1}{\cos^2 \theta}](https://tex.z-dn.net/?f=%5Ctextsf%7BUse%20the%20trigonometric%20identity%7D%3A%20%5Cquad%5Csec%5E2%20%5Ctheta%3D%5Cdfrac%7B1%7D%7B%5Ccos%5E2%20%5Ctheta%7D)
![\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdisplaystyle%20%5Cdfrac%7B1%7D%7B9%7D%20%5Cint%20%5Csec%5E2%20%5Ctheta%5C%3A%5C%3A%5Ctext%7Bd%7D%5Ctheta)
![\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Bminipage%7D%7B5%20cm%7D%5Cunderline%7BIntegrating%20%24%5Csec%5E2%20kx%24%7D%5C%5C%5C%5C%24%5Cdisplaystyle%20%5Cint%20%5Csec%5E2%20kx%5C%3A%5Ctext%7Bd%7Dx%3D%5Cdfrac%7B1%7D%7Bk%7D%20%5Ctan%20kx%5C%3A%5C%3A%28%2B%5Ctext%7BC%7D%29%24%5Cend%7Bminipage%7D%7D)
![\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta = \dfrac{1}{9} \tan \theta+\text{C}](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdisplaystyle%20%5Cdfrac%7B1%7D%7B9%7D%20%5Cint%20%5Csec%5E2%20%5Ctheta%5C%3A%5C%3A%5Ctext%7Bd%7D%5Ctheta%20%3D%20%5Cdfrac%7B1%7D%7B9%7D%20%5Ctan%20%5Ctheta%2B%5Ctext%7BC%7D)
![\textsf{Use the trigonometric identity}: \quad \tan \theta=\dfrac{\sin \theta}{\cos \theta}](https://tex.z-dn.net/?f=%5Ctextsf%7BUse%20the%20trigonometric%20identity%7D%3A%20%5Cquad%20%5Ctan%20%5Ctheta%3D%5Cdfrac%7B%5Csin%20%5Ctheta%7D%7B%5Ccos%20%5Ctheta%7D)
![\implies \dfrac{\sin \theta}{9 \cos \theta} +\text{C}](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdfrac%7B%5Csin%20%5Ctheta%7D%7B9%20%5Ccos%20%5Ctheta%7D%20%2B%5Ctext%7BC%7D)
![\textsf{Substitute back in } \sin \theta=\dfrac{x}{3}:](https://tex.z-dn.net/?f=%5Ctextsf%7BSubstitute%20back%20in%20%7D%20%5Csin%20%5Ctheta%3D%5Cdfrac%7Bx%7D%7B3%7D%3A)
![\implies \dfrac{x}{9(3 \cos \theta)} +\text{C}](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdfrac%7Bx%7D%7B9%283%20%5Ccos%20%5Ctheta%29%7D%20%2B%5Ctext%7BC%7D)
![\textsf{Substitute back in }3 \cos \theta=\sqrt{9-x^2}:](https://tex.z-dn.net/?f=%5Ctextsf%7BSubstitute%20back%20in%20%7D3%20%5Ccos%20%5Ctheta%3D%5Csqrt%7B9-x%5E2%7D%3A)
![\implies \dfrac{x}{9\sqrt{9-x^2}} +\text{C}](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdfrac%7Bx%7D%7B9%5Csqrt%7B9-x%5E2%7D%7D%20%2B%5Ctext%7BC%7D)
Learn more about integration by substitution here:
brainly.com/question/28156101
brainly.com/question/28155016
Answer:
0.714 mins
Step-by-step explanation:
by using the rule of three:
180 mins----->252 ballons
x----------------1 ballon=0.714 mins