Metal pots are good for cooking because they have heat conductivity.
Answer: a. +2, cation and magnesium ion .
b. -1, anion, chloride
c. -2, anion, oxide
d. +1. cation , potassium ion
Explanation:
When an atom accepts an electron negative charge is created on atom and is called as anion.
When atom loses an electron positive charge is created on atom and is called as cation.
Magnesium (Mg) with atomic number of 12 has electronic configuration of 2,8,2 and thus it can lose 2 electrons to form
cation and becomes magnesium ion.
Chlorine (Cl) with atomic number of 17 has electronic configuration of 2,8,7 and thus it can gain 1 electron to form
anion and becomes chloride.
Oxygen (O) with atomic number of 8 has electronic configuration of 2,6 and thus it can gain 2 electrons to form
anion and becomes oxide.
Potassium (K) with atomic number of 19 has electronic configuration of 2,8,8,1 and thus it can lose 1 electron to form
cation and becomes potassium ion.
Answer:
1.8 g
Explanation:
Step 1: Write the balanced equation
CH₃CH₃(g) + 3.5 O₂(g) ⇒ 2 CO₂(g) + 3 H₂O(g)
Step 2: Determine the limiting reactant
The theoretical mass ratio of CH₃CH₃ to O₂ is 30.06:112.0 = 0.2684:1.
The experimental mass ratio of CH₃CH₃ to O₂ is 0.60:3.52 = 0.17:1.
Thus, the limiting reactant is CH₃CH₃
Step 3: Calculate the mass of CO₂ produced
The theoretical mass ratio of CH₃CH₃ to O₂ is 30.06:88.02.
0.60 g CH₃CH₃ × 88.02 g CO₂/30.06 g CH₃CH₃ = 1.8 g
Answer:
LiOH + KCl —> LiCl + KOH
Explanation:
LiOH + KCl —> LiCl + KOH
The equation is balanced since we have the same number atoms of the different elements on both side of the equation