Answer:
Explanation:
1 ) Average power supplied to an inductor is zero because the phase difference of potential and current is π / 2 .
So it is a wrong statement .
2 ) Step up transformer increases the voltage . At high voltage , lesser current is required to transport electrical energy . When current is reduced , the loss of energy due to heating effect is reduced .
3 ) voltage and current are in phase in resistance in ac .
3 ) RMS stands for Root Mean Square .
Answer:
Explanation:
Laminar Flow is a very important topic discussed in physics in the subject of fluid dynamics. Basically, it explains how fluid particles behave at lower velocities. In such cases and when the viscosity of the fluid is low, the fluid particles flow smoothly in perfectly perpendicular layers that do not collide or cross each other. Unlike turbulent flow, which is the opposite. An example of Laminar flow can be seen when you open up a water hose with little pressure, the water simply flows out of the hose and looks very clear and smooth.
<h2>
Right answer: 64 units</h2><h2>
</h2>
According to the law of universal gravitation, which is a classical physical law that describes the gravitational interaction between different bodies with mass:

Where:
is the module of the force exerted between both bodies
is the universal gravitation constant.
and
are the masses of both bodies.
is the distance between both bodies
In this case we have a gravitation force
, given by the formula written at the beginning. Let’s rename the distance
as
:
(1)
And we are asked to find the gravitation force
with a given distance of
:
(2)
The gravity constant is the same for both equations, and we are assuming both masses are constants, as well. So, let’s isolate
in both equations:
From (1):
(3)
From (2):
(4)
If (3)=(4):
(5)
Now we have to find
:
(6)
If
:
>>>>This is the new force of attraction
Answer: y(t)= 1/π^2 sin(6*π^2*t)
Explanation: In order to solve this problem we have to consider the general expression for a harmonic movement given by:
y(t)= A*sin (ω*t +φo) where ω is the angular frequency. A is the amplitude.
The data are: ν= 3π; y(t=0)=0 and y'(0)=6.
Firstly we know that 2πν=ω then ω=6*π^2
Then, we have y(0)=0=A*sin (6*π^2*0+φo)= A sin (φo)=0 then φo=0
Besides y'(t)=6*π^2*A*cos (6*π^2*t)
y'(0)=6=6*π^2*A*cos (6*π^2*0)
6=6*π^2*A then A= 1/π^2
Finally the equation is:
y(t)= 1/π^2 sin(6*π^2*t)