Becuse your weighting with chalk that has pigment
Answer:
An increase in air temperature because of its compression.
Explanation:
The Gay-Lussac's Law states that a gas pressure is directly proportional to its temperature in an enclosed system to constant volume.
<em>where P: is the gas pressure, T: is the gas temperature and k: is a constant.</em>
Therefore, due to Gay-Lussac's Law, when the plunger is pushed down very rapidly, the pressure of the air increase, which leads to its temperature increase. That is why cotton flashes and burns.
I hope it helps you!
Answer:
4. B and D
Explanation:
Two points along a transverse wave (such as the one in the figure) are said to be in phase when:
- the vertical position of the two points is the same
- The oscillation of the wave is going in the same way for both points
Basically, we say that two points are in phase when they are separated by a complete cycle (one complete oscillation) of the wave.
For this wave, we see that point B and C have same displacement, but they are not in phase since in B the oscillation is going down while in C is going up.
Instead, B and D are in phase, because they are separated by one complete cycle: both points have same displacement and the oscillation is going in the same way for both of them.
Answer:
The car stops in 7.78s and does not spare the child.
Explanation:
In order to know if the car stops before the distance to the child, you take into account the following equation:
(1)
vo: initial speed of the car = 45km/h
a: deceleration of the car = 2 m/s^2
t: time
xo: initial distance to the child = 25m
x: final distance to the child = 0m
It is necessary that the solution of the equation (1) for time t are real.
You first convert the initial speed to m/s, then replace the values of the parameters and solve the quadratic polynomial for t:


You take the first value t1 because it has physical meaning.
The solution for t is real, then, the car stops in 7.78s and does not spare the child.