Answer:
7. ∠CBD = 100°
8. ∠CBD = ∠BCE = 100°; ∠CED = ∠BDE = 80°
Step-by-step explanation:
7. We presume the angles at A are congruent, so that each is 180°/9 = 20°.
Then the congruent base angles of isosceles triangle ABC will be ...
∠B = ∠C = (180° -20°)/2 = 80°
The angle of interest, ∠CBD is the supplement of ∠ABC, so is ...
∠CBD = 180° -80°
∠CBD = 100°
__
8. In the isosceles trapezoid, base angles are congruent, and angles on the same end are supplementary:
∠CBD = ∠BCE = 100°
∠CED = ∠BDE = 80°
Answer:
Step-by-step explanation:
B = {p , q , r}
Number of subsets = 
Her, n is the number of elements in the set.
Number of subsets = 2³ = 8
Answer:
Graph of the inequality 3y-2x>-18 is given below.
Step-by-step explanation:
We are given the inequality, 3y-2x>-18
Now, using the 'Zero Test', which states that,
After substituting the point (0,0) in the inequality, if the result is true, then the solution region is towards the origin. If the result is false, then the solution region is away from the origin'.
So, after substituting (0,0) in 3y-2x>-18, we get,
3\times 0-2\times 0>-18
i.e. 0 > -18, which is true.
Thus, the solution region is towards the origin.
Hence, the graph of the inequality 3y-2x>-18 is given below.