We divide the thin rectangular sheet in small parts of height b and length dr. All these sheets are parallel to b. The infinitesimal moment of inertia of one of these small parts is

where

Now we find the moment of inertia by integrating from

to

The moment of inertia is

(from (-a/2) to

(a/2))
Explanation:
It is given that,
Length of wire, l = 0.53 m
Current, I = 0.2 A
(1.) Approximate formula:
We need to find the magnitude of the magnetic field made by the current at a location 2.0 cm from the wire, r = 2 cm = 0.02 m
The formula for magnetic field at some distance from the wire is given by :


B = 0.000002 T

(2) Exact formula:


B = 0.00000199 T
or
B = 0.000002 T
Hence, this is the required solution.
Answer:
8 Hz, 48 Hz
Explanation:
The standing waves on a string (or inside a pipe, for instance) have different modes of vibrations, depending on how many segments of the string are vibrating.
The fundamental frequency of a standing wave is the frequency of the fundamental mode of vibration; then, the higher modes of vibration are called harmonics. The frequency of the n-th harmonic is given by

where
is the fundamental frequency
In this problem, we know that the wave's third harmonic has a frequency of

This means this is the frequency for n = 3. Therefore, we can find the fundamental frequency as:

Now we can also find the frequency of the 6-th harmonic using n = 6:

Answer:
Adam and Eve are the Bible's first man and first woman. the only thing capable of traveling faster than the speed of light is, somewhat paradoxically, light itself, though only when not in the vacuum of space. Of note, regardless of the medium, light will never exceed its maximum speed of 186,282 miles per second.
Explanation:
<span>The
answer is towards <span>the poles. This is because, at
the poles of the magnet, the magnetic field lines get closer together hence
indicating that the magnetic force is stronger here. The fields are closest
together at the center of the magnet and farthest at the outside side of the
magnet. </span></span>