Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input



Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
Beats are interference patterns between two tones of different frequencies. To prove the skeptic first, play the recorded audio as there are no beats in it. Now take two sound sources with different frequencies. When both sources are turned on, we hear notes that rise and fall at equal intervals. That's what's called beats.
A frequency beat occurs when two waves with different frequencies overlap, causing alternating cycles of constructive and destructive interference between the waves.
When we tap the table with our finger, then put our ear to the table, and tap the table surface as far as 30 cm from our ear. Then the sound of beats on the table will sound louder when we put our ears on the table. So, it can be concluded that solid objects can conduct sound better than air. This is because the molecules or particles of solid objects are denser than air.
Learn more about the beat's frequency at brainly.com/question/14157895
#SPJ4
Answer:
300 m/s
Explanation:
The difference in time between the two bangs is 1 s.
Thus;
t2 - t1 = 1
We know that distance/time = speed.
Thus;
d2/v - d1/v = 1
Multiply through by v to get;
d2 - d1 = v
Where v is speed of sound in air.
d1 = 350 m
d2 = (150 × 2) + 350 = 650 m
Thus;
v = d2 - d1 = 650 - 350 = 300 m/s
Answer:
Charge on each is 2 x 10⁻¹⁰.
Explanation:
We know that Force between two point charges is given b the Coulomb's law as:
F = kq₁q₂/r^2
k = 9 x 10^9
r = 3.00 cm
= 0.03 m
q₁ = q₂
F = 4.00 x 10^-7
Rearranging the formula, we get:
F = k q²/r²
q² = Fr²/k
q² = 4 x 10⁻⁷ x 0.03²/(9x10⁹)
q² = 4 x 10⁻²⁰
q = 2 x 10⁻¹⁰
As there is force of repulsion between the charges, the charges must be both positive or both negative.