Circular motion is what an object has if it is moving around and around and around and around and around and around and around and around and around in a path that is a circle.
You have to use the specific heat equation.
Q = cmΔT where Q is the energy, c is specific heat, m is mass, and ΔT is change in temp.
So we can substitute our variables into the equation.
30000J = (390g)(3.9J*g/C)ΔT
Solving for ΔT, we get:
30000J/[(390g)*(3.9J*g/C) = ΔT
ΔT = 19.72386588C
I'm assuming the temperature is C, since it was not specified.
Hope this helps!
Answer:
Explanation:
The formula for this is
where F is the gravitational force, G is the gravitational constant, m1 is the mass of one object and m2 is the mass of the other object. We are looking for r, the distance between the centers of their masses.
Filling in:
and moving things around to solve for r:
Doing all that and rounding to the 3 sig fig's you need gives us a distance of 1.55 m