Answer: send the message underwater because a more dense medium would make the sound travel faster.
Explanation:
Dolphins communicate using compression waves - longitudinal waves. Longitudinal waves requires a medium to travel. A longitudinal wave transfers energy by the vibration of medium particles in the direction of the wave motion. Compression are the regions where density of the medium is higher and rarefaction is a low density region.
A longitudinal wave travels faster in a denser medium. It has maximum speed in solid and minimum in gas. Thus, to transfer message quickly to dolphin B., dolphin A should send the message underwater and not in air. This is because water has higher density than air. Molecules collide more quickly in water than in air and it takes less time for signal to travel.
Answer:
a) 2nd case rate of rotation gives the greater speed for the ball
b) 1534.98 m/s^2
c) 1515.04 m/s^2
Explanation:
(a) v = ωR
when R = 0.60, ω = 8.05×2π
v = 0.60×8.05×2π = 30.34 m/s
Now in 2nd case
when R = 0.90, ω = 6.53×2π
v = 0.90×6.53×2π = 36.92 m/s
6.35 rev/s gives greater speed for the ball.
(b) a = ω^2 R = (8.05×2π)^2 )(0.60) = 1534.98 m/s^2
(c) a = ω^2 R = (6.53×2π)^2 )(0.90) = 1515.05 m/s^2
Given Information:
Magnetic field = B = 1×10⁻³ T
Frequency = f = 72.5 Hz
Diameter of cell = d = 7.60 µm = 7.60×10⁻⁶ m
Required Information:
Maximum Emf = ?
Answer:
Maximum Emf = 20.66×10⁻¹² volts
Explanation:
The maximum emf generated around the perimeter of a cell in a field is given by
Emf = BAωcos(ωt)
Where A is the area, B is the magnetic field and ω is frequency in rad/sec
For maximum emf cos(ωt) = 1
Emf = BAω
Area is given by
A = πr²
A = π(d/2)²
A = π(7.60×10⁻⁶/2)²
A = 45.36×10⁻¹² m²
We know that,
ω = 2πf
ω = 2π(72.5)
ω = 455.53 rad/sec
Finally, the emf is,
Emf = BAω
Emf = 1×10⁻³*45.36×10⁻¹²*455.53
Emf = 20.66×10⁻¹² volts
Therefore, the maximum emf generated around the perimeter of the cell is 20.66×10⁻¹² volts
The heat capacity and the specific heat
Answer:
The answer is D
Explanation:
I'm too lz to explain everything.
sorry.