<span>PV=nRT= a universal constant
For any condition
P1V1/n1T1=R
and
P2V2/n2T2=R
i.e
P1V1/n1T1=P2V2/n2T2
Becomes
V1/n1=V2/n2
rearranging and solving
V2=V1X(n2/n1)= 750 mLx((0.65+0.35)/(0.65))=1200ml=1.2L...2 sig figs</span>
wherears one hydrogen atom has a mass of approximately 1 u ,1 mol of h atoms has a mass of approximately 1 gram and wherears one sodium atom has an approximately 1 gram and one sodium atom have approximate mass of 23 u
Answer:
You didn't list the compounds it gave you so i cant cross check them to see it they are ionic bonds( which is the chemical bonding is formed between metal and nonmetal)
if you reply with the compounds it list I will be happy to check for you
Hey I can't see the questions properly
To solve for the enthalpy of reaction, we apply the Hess's Law.
ΔHrxn = ∑(ν×Hf of products) - ∑(ν×Hf of reactants)
where
v is the stoichiometric coefficient determined from the balanced reaction
Hf is the standard heat of formation; these are empirical values:
*For CH₄: Hf = <span>−74.87 kJ/mol
*For O</span>₂: Hf = 0
*For CO₂: <span>-393.5 kJ/mol
*For H</span>₂O: <span>-241.82 kJ/mol
</span>ΔHrxn = [(2*-241.82 kJ/mol)+(1*-393.5 kJ/mol)] - [(1*−74.87 kJ/mol)+(2*0 kJ/mol)] =<em> -802.27 kJ/mol</em>