Answer:
What are large, relatively flat areas? ... Why are coastal plains also called lowlands? ... What is a grassy wetland usually flooded with water? ... What rises steeply from the land around them? ... flat raised landform made up of nearly horizontal rocks that have been uplifted ... distances in degrees north or south the equator.
Explanation:
Answer:
A. CsBr(s)
Explanation:
we will get here compound with the lowest lattice energy
solution
As we know that Lattice energy is always proportional to the charge of ions and it is inversely proportional to the size of ions.
so that by the smallest charge and the largest size give us the lowest lattice energy and that charge and size is express as here as
Charge
Cs (+1), K(+1), Na (+1), Cl(-1), Br(-1), Sr(+2), Ca(+2), O(-2) .......................1
and
Size
Na+ < Ca2+ < K+ < Sr2+ < Cs+, O2- < Cl- < Br- ..........................2
so that here
correct answer is A. CsBr
Answer:
4 elements
Explanation:
The four elements would be:
C-Carbon
H-Hydrogen
O-Oxygen
S-Sulfur
Hope this helps :)
Answer:
Carbon dioxide, CO2, is a chemical compound composed of two oxygen atoms and one carbon atom.
Explanation:
Answer:
5.45*10⁻⁴ moles of silane gas (SiH₄) are present in 8.68 mL measured at 18°C and 1.50 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 1.5 atm
- V= 8.68 mL= 0.00868 L (being 1000 mL= 1 L)
- n= ?
- R= 0.082

- T= 18 C= 291 K (being 0 C= 273 K)
Replacing:
1.5 atm* 0.00868 L= n* 0.082
*291 K
Solving:

n= 5.45*10⁻⁴ moles
<u><em>5.45*10⁻⁴ moles of silane gas (SiH₄) are present in 8.68 mL measured at 18°C and 1.50 atm.</em></u>