The point at which one drop of base turns the acid indicator into a pink color that lasts for thirty seconds in doing titration is called the end point or the equivalence point.
End point or the equivalence point is the one responsible for the pink color that lasts for thirty seconds.
Fold mountains<span> are </span>mountains<span> that form mainly by the effects of </span>folding<span> on layers within the upper part of the Earth's crust. Before either plate tectonic theory developed, or the internal architecture of thrust belts became well understood, the term was used for most</span>mountain<span> belts, such as the Himalayas.</span>
Answer:
P2= 125.26 Kpa
Explanation:
V1= 489.6 ml=0.4896L
V2= 750 ml= 0.750L
V1= 180 KPa= 180000 Pa
P2= ?
T1= 10 = 10 + 273.15 = 283.15K
T2= 28.7+273.15= 301.85K
180000Pa* 0.4896L/ 283.15K * 301.85K/0.75L
P2= 12526.28553
P2= 125.26 KPa
Answer:
a) 7.0.
b) Nickel sulfate hepta hydrate.
c) 280.83 g/mol.
d) 44.9%.
Explanation:
<u><em>a) What is the formula of the hydrate?</em></u>
The mass of the hydrated sample (NiSO₄.xH₂O) = 5.0 g,
The mass of the anhydrous salt (NiSO₄) = 2.755 g,
The mass of water = 5.0 g - 2.755 g = 2.245 g.
∴ no. of moles of water = mass/molar mass = (2.245 g)/(18.0 g/mol) = 0.1247 mol.
∴ no. of moles of anhydrous salt (NiSO₄) = mass/molar mass = (2.755 g)/(154.75 g/mol) = 0.0178 mol.
∴ water of crystallization in the sample (x) = no. of moles of water/no. of moles of anhydrous salt (NiSO₄) = (0.1247 mol)/(0.0178 mol) = 7.0.
<u><em>b) What is the full chemical name for the hydrate?</em></u>
The name of the salt (NiSO₄.7H₂O) is Nickel sulfate hepta hydrate.
<u><em>c) What is the molar mass of the hydrate? </em></u>
(NiSO₄.7H₂O)
The molar mass = molar mass of NiSO₄ + 7(molar mass of H₂O) = (154.75 g/mol) + 7(18.0 g/mol) = 280.83 g/mol.
<em><u>d) What is the mass % of water in the hydrate?</u></em>
The mass % of water = (mass of water)/(mass of hydrated sample) x 100 = (2.245 g)/(5.0 g) x 100 = 44.9%.
Answer: 72.4 kJ/mol
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
![\Delta H=[(n_{CO_2}\times \Delta H_{CO_2})+(n_{H_2O}\times \Delta H_{H_2O})]-[(n_{O_2}\times \Delta H_{O_2})+(n_{C_3H_8}\times \Delta H_{C_3H_8})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCO_2%7D%5Ctimes%20%5CDelta%20H_%7BCO_2%7D%29%2B%28n_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_%7BH_2O%7D%29%5D-%5B%28n_%7BO_2%7D%5Ctimes%20%5CDelta%20H_%7BO_2%7D%29%2B%28n_%7BC_3H_8%7D%5Ctimes%20%5CDelta%20H_%7BC_3H_8%7D%29%5D)
where,
n = number of moles
(as heat of formation of substances in their standard state is zero
Now put all the given values in this expression, we get
![-2220.1=[(3\times -393.5)+(4\times -241.8)]-[(5\times 0)+(1\times \Delta H_{C_3H_8})]](https://tex.z-dn.net/?f=-2220.1%3D%5B%283%5Ctimes%20-393.5%29%2B%284%5Ctimes%20-241.8%29%5D-%5B%285%5Ctimes%200%29%2B%281%5Ctimes%20%5CDelta%20H_%7BC_3H_8%7D%29%5D)

Therefore, the heat of formation of propane is 72.4 kJ/mol