<u>Answers</u>
1. Minimum = 4
2. First quartile = 6.5
3. Median = 13.5
4. Third quartile = 19
5. Maximum = 20
<u>Explanation</u>
To calculate the measure of central tendency, you first arrange the set of the data in ascending order.
The set of data given will be;
4, 4, 9, 9, 18, 18, 20, 20.
Part 1:
The minimum value of the data is 4.
Part 2:
The first quatile is the median of the lower half which is comprised by:
4, 4, 9, 9
1st quartile = (4+9)÷2
= 13÷2
= 6.5
Part 3:
Median of the data is;
Median = (9+18)÷2
=27÷2
= 13.5
Part 4:
3rd quartile is the median of the upper half which comprises of;
18, 18, 20, 20.
3rd quartile = (18+20)÷2
= 48÷2
= 19
Part 5
The maximum of the set of data is 20.
Answer:
The equation of the required line is y = x + 5
Step-by-step explanation:
The equation of the given line is y = x - 2
The required line = A line parallel to the given line
The point through which the required line passes = (-3, 2)
The general form of the equation of a straight line, is y = m·x + c
Where;
m = The slope of the line
By comparison, the slope of the given line, m = 1
When two lines are parallel, their slope are equal
Therefore, the slope of the required line = m = 1
The equation of the required line in point and slope form is therefore;
y - 2 = x - (-3) = x + 3
∴y = x + 3 + 2 = x + 5
The equation of the required line is therefore;
y = x + 5.
Note that x² + 2x + 3 = x² + x + 3 + x. So your integrand can be written as
<span>(x² + x + 3 + x)/(x² + x + 3) = 1 + x/(x² + x + 3). </span>
<span>Next, complete the square. </span>
<span>x² + x + 3 = x² + x + 1/4 + 11/4 = (x + 1/2)² + (√(11)/2)² </span>
<span>Also, for the x in the numerator </span>
<span>x = x + 1/2 - 1/2. </span>
<span>So </span>
<span>(x² + 2x + 3)/(x² + x + 3) = 1 + (x + 1/2)/[(x + 1/2)² + (√(11)/2)²] - 1/2/[(x + 1/2)² + (√(11)/2)²]. </span>
<span>Integrate term by term to get </span>
<span>∫ (x² + 2x + 3)/(x² + x + 3) dx = x + (1/2) ln(x² + x + 3) - (1/√(11)) arctan(2(x + 1/2)/√(11)) + C </span>
<span>b) Use the fact that ln(x) = 2 ln√(x). Then put u = √(x), du = 1/[2√(x)] dx. </span>
<span>∫ ln(x)/√(x) dx = 4 ∫ ln u du = 4 u ln(u) - u + C = 4√(x) ln√(x) - √(x) + C </span>
<span>= 2 √(x) ln(x) - √(x) + C. </span>
<span>c) There are different approaches to this. One is to multiply and divide by e^x, then use u = e^x. </span>
<span>∫ 1/(e^(-x) + e^x) dx = ∫ e^x/(1 + e^(2x)) dx = ∫ du/(1 + u²) = arctan(u) + C </span>
<span>= arctan(e^x) + C.</span>
Answer:
Determine the conditional probability distribution of X given that Y = 1 and Z = 2. Round your answers to two decimal places (e.g. 98.76).
answer:
Given that Y = 1 : 2/5
Given that Z = 2 : 3/5
Step-by-step explanation:
The conditional probability distribution of X F x | yz^( x )
Given that Y = 1
F x | yz . ( x | yz ) = 2/5
Given that z = 2
= 3/5
attached below is the detailed solution
Answer:
The question is not complete but from the flow of thought, the question seems to be about what your choice will be between option 1 and option 2.
The correct answer is
option 2
Step-by-step explanation:
The question is asking you to choose an option that pays more after 30 days. In other to determine the more beneficial option, we will compare both options and select the one that pays more. This is done as follows:
option 1: $60,000 per day, after 30 days =
60,000 × 30 = $1,800,000
option 2 = $5,368,709.12 after 30 days
From the total amounts after 30 days of the two options listed above, option 2 is higher than option 1 by $3,568,709. Therefore, option 2 is a better choice.