The maximum allowable torque must correspond to the allowable shear stress for maximization. To solve this, we use the torsion formula:
Max. Allowable Shear Stress = Maximum Torque ÷ Cross-Sectional Area
8 x 10^6 Pa = Maximum Torque ÷ pi*(d/2)²
Maximum Torque = 8 x 10^6 Pa * pi*(0.06/2)² m²
Maximum Torque = 22,619.47 J or
Maximum Torque = 22.62 kJ
As for the second question, I have no reference figure so I am unable to answer it. I hope I was still able to help you, though.
Muscles function only by contracting. This makes it necessary for one end of the muscle to be fixed and the other mobile.
Take the bicep for example.
Its origin is at the shoulder and its two heads connect to the bones of the forearm, the radius and ulna.
Now, had the muscle not been fixed at one end, and contracted, it would pull both our shoulder and forearm together resulting in an ineffective movement. The desired motion is to lift the forearm (proximal and distal movement) which can only be achieved if the bicep is fixed at the shoulder and allowed to move at the forearm.
The maximum extent of a vibration, measured from the position of equilibrium.
The meaning of equilibrium is being in the position of physical balance.
6 electrons are shared between a nitrogen and a carbon atom.
Answer:
A ball moving until gravity pulls it back down to the ground
Explanation: