Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
The answer is c .Frequency
Wood frogs have this adaptation where they accumulate urea in their bodies and convert their liver glycogen to glucose to act as cryoprotectants. This prevents the formation of ice crystals in their bodies that could cause damage cells during freezing in winter.
Answer:
the image is behind the mirror
virtual
erect(not inverted)
larger than the object
Answer:
<em>20.08 Volts</em>
Explanation:
<u>Parallel Connection of Capacitors</u>
The voltage across any two elements connected in parallel is the same. If the elements are capacitors, then each voltage is


They are both the same after connecting them, thus

Or, equivalently

The total charge of both capacitors is

We can compute the total charge by using the initial conditions where both capacitors were disconnected:

Now we compute Q1 from the equation above

The final voltage of any of the capacitors is
