Wildfires benefit grasslands, northern forests, and deciduous forests. Grasslands are benefited by improved soil quality and control of tree cover. Invertebrate species diversity is maintained through wildfire as well. Northern forests, like grasslands, experience increased production and nutritional quality of food as a result of wildfires. Deciduous forests experience an increase in the nutritional quality of food as well, but the effects are more temporary. The amount of shrubs in deciduous forests is reduced as a result of wildfires, allowing more herbaceous plants such as mosses and lichens to grow.
The data given in the bar graph is valid because it follows the law of conservation of energy, since the GPE at top of 2nd hill plus KE at top of 2nd hill equals KE at bottom of 1st hill.
<h3>What is law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
Based on the law of conservation of energy, kinetic energy of a roller coaster can be converted into potential energy of the roller coaster and vice versa.
ΔK.E = ΔP.E
where;
- ΔK.E is change in kinetic energy
- ΔP.E is change in potential energy
The kinetic energy of the coaster is greatest at the bottom of the hill, as the coaster moves upward, the kinetic energy decreases and will be converted into potential energy. The potential energy of the coaster increases as the coaster moves up the hill and will become maximum at the highest point of the hill.
From the given data;
GPE at top of 2nd hill + KE at top of 2nd hill = KE at bottom of 1st hill
Learn more about conservation of energy here: brainly.com/question/166559
#SPJ1
Answer:
The surface of Mercury has landforms that indicate its crust may have contracted. They are long, sinuous cliffs called lobate scarps. These scarps appear to be the surface expression of thrust faults, where the crust is broken along an inclined plane and pushed upward.
Explanation:
I hope this helps a little bit.
1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find

2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:

The change in momentum of the car is 6000 kg m/s
Explanation:
According to the impulse theorem, the change in momentum of an object is equal to the impulse exerted on the object, therefore:

where
is the change in momentum
I is the impulse exerted
For the car in this problem, the impulse received is
I = 6000 kg m/s (in the forward direction)
Therefore, the change in momentum of the car is equal to this value:
(in the forward direction)
We can also calculate what is the new momentum of the car. In fact, the initial momentum is

And so, the new momentum is

Learn more about impulse and momentum:
brainly.com/question/9484203
#LearnwithBrainly