Enzymes are in our bodies to speed up reactions etc. If there were no enzymes, then our bodies would act very slowly to reactions.
Answer:
1. Adaptive radiation: A pattern of evolution in which slightly different species evolve from one common ancestor.
2. Coevolution: A pattern of evolution in which two species evolve in relation to each other.
3. Convergent evolution: A pattern of evolution in which similar characteristics evolve between two unrelated species.
4. Divergent evolution: A pattern of evolution in which very different species evolve from one common ancestor.
5. Gradualism: A theory of evolution that states that a species evolves by consistent, small, steps.
6. Punctuated equilibrium: A theory of evolution that states that a species evolves in spurts of rapid change and then no change.
Answer:
A- A pH change can cause the enzyme to change its shape
Explanation:
A rise or fall in the pH of the medium from the optimum of pH 7 usually affect the enzymes' active sites of and therefore the shape and the rate of enzyme activity.
Assuming the pH is too low, the enzyme medium becomes acidic;Acidosis. The high Hydrogen ions concentration interacts with the R-groups of the amino acids moiety of the enzymes, this interaction affects the ionization of the R-groups, disrupting the ionic bonding holding these R-groups in shape.
This results in loss of the 3-Dimensional shape arrangements of the protein molecule and therefore of the active sites. Since active sites of enzymes determines the specificity of the <u>enzymes substrate- complex </u> to give <u>enzyme-product complex,</u> the catalytic activity of the enzymes decreases, <u>the rate of reaction decreases,and products formation stops, and the reaction also stops.</u>
The same is applicable to extremely high pH=Alkalosis.
However, the effective buffer system of the body prevents this scenarios from happening in real sense in the body. Through mopping by the haemoglobin, excretion by the kidney, etc
<span>If each of the pairs of
chromosomes was heterozygous (what gives you the highest potential
number of different gametes), then the number of possible gametes
increases from 4 to 8 for a diploid organism. To figure out how many
are possible, raise the number of homologous chromsomes (2 for a diploid
organism) to the power of the number of chromosomes. So if you have
two different chromosomes (A and B), raise 2 to the 2nd power (or
multiply 2 x 2) and you have 4. If you have chromosomes A, B, and C,
then you have 2^3, or 2 x 2 x 2 = 8.
To show possible combinations, AaBb gives you AB, Ab, aB, or ab. AaBbCc
gives possible gametes of ABC, ABc, AbC, Abc, aBC, aBc, abC, and abc. </span>