The enthalpy<span> of </span>solution<span>, </span>enthalpy<span> of dissolution, or heat of </span>solution<span> is the</span>enthalpy<span> change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution. The </span>enthalpy<span> of </span>solution<span> is most often expressed in kJ/mol at constant temperature. </span>
Answer:
x = 1, -7.5
Explanation:
2x² + 13x = 15
Divide the left side of the equation by 2
2(x² + 6.5x) = 15
Divide 6.5 by 2 and square the quotient
6.5/2 = 3.25
3.25² = 10.5625
Add 10.5625 to the left side
2(x² + 6.5x + 10.5625) = 15
Since you have a 2 outside the parentheses, you will be adding 10.5625•2 to the right side.
10.5625 • 2 = 21.125
2(x² + 6.5x + 10.5625) = 36.125
To factor (x² + 6.5x + 10.5625), add b/2 to x
b/2 = 6.5/2 = 3.25
2(x + 3.25)² = 36.125
Divide by 2
(x + 3.25)² = 18.0625
Square root.
(x + 3.25) = √18.0625
x + 3.25 = ±4.25
Subtract 3.25.
x = 4.25 - 3.25 = 1
x = -4.25 - 3.25 = -7.5
x = 1, -7.5
Remember, look at the coefficients in the balanced equation! Here are three mole ratios:
1 mole<span> N2 / </span>3 moles<span> H2.</span>
3 moles<span> H2 / 2 moles NH3.
</span>
Based on the assumption that the reaction involves N and O to produce NO, if 25.0 g of NO are produced, the amount of N gas used would be 11.66 grams
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:
N + O ---------> NO
Mole ratio of N to NO is 1:1
Mole of 25.0 g of NO = 25/30.01 = 0.833 moles
Equivalent mole of N = 0.833 moles
Mass of 0.833 moles N = 0.833 x 14 = 11.66 grams
More on stoichiometric calculations can be found here: brainly.com/question/8062886
I found this on google
“The periodic table is important because its is organized to provide a great deal of information about elements and how they relate to one another in one-easy-to-use reference. The table can be used to predict the properties of elements, even those that have not been discovered.”
I hope this helps