Molarity = moles of solute/volume of solution in liters.
There are 2.66 moles of KOH, the solute, and the volume of the solution is 0.750 L.
The molarity of this solution would thus be (2.66 moles KOH)/(0.750 L) = 3.55 M KOH.
Answer:
3
2
Explanation:
3O2 => 2O3
the equation is balancing
Answer:
(a) Benzene = 0.26; toluene = 0.74
(b) Benzene = 0.55
Explanation:
1. Calculate the composition of the solution
For convenience, let’s call benzene Component 1 and toluene Component 2.
According to Raoult’s Law,

where
p₁ and p₂ are the vapour pressures of the components above the solution
χ₁ and χ₂ are the mole fractions of the components
p₁° and p₂° are the vapour pressures of the pure components.
Note that
χ₁ + χ₂ = 1
So,

χ₁ = 0.26 and χ₂ = 0.74
2. Calculate the mole fraction of benzene in the vapour
In the liquid,
p₁ = χ₁p₁° = 0.26 × 75 mm = 20 mm
∴ In the vapour

Note that the vapour composition diagram below has toluene along the horizontal axis. The purple line is the vapour pressure curve for the vapour. Since χ₂ has dropped to 0.45, χ₁ has increased to 0.55.
Explanation:
frequency= velocity/ wavelength
= 340/1.36
=250
Answer:
CaF2 + CO3- ----> CaCO3 + 2 F-
Explanation:
The chemical compounds found on the left side of the date are the reagents and those found on the right are the products, where calcium carbonate appears.
Calcium carbonate is a quaternary salt