The inaccurate measurements must be similar to the other two measurements (ex; 590, 589, 599), but different from the actual volume of water. (Ex; the actual volume is let say.. 100, but you measured 50, 49, 40)
Answer:
A = 2.36m/s
B = 3.71m/s²
C = 29.61m/s2
Explanation:
First, we convert the diameter of the ride from ft to m
10ft = 3m
Speed of the rider is the
v = circumference of the circle divided by time of rotation
v = [2π(D/2)]/T
v = [2π(3/2)]/4
v = 3π/4
v = 2.36m/s
Radial acceleration can also be found as a = v²/r
Where v = speed of the rider
r = radius of the ride
a = 2.36²/1.5
a = 3.71m/s²
If the time of revolution is halved, then radial acceleration is
A = 4π²R/T²
A = (4 * π² * 3)/2²
A = 118.44/4
A = 29.61m/s²
Answer: A
Explanation:
honestly, it sounded the best
Answer:
K' = 1777.777 J
Explanation:
Given that
m = 40 kg
v= 15 m/s
K=1000
Given that kinetic energy(K) varies with mass(m) and velocity(v)
K= C(mv²)
Where
C= Constant
m=mass
v=velocity
When
m = 40 kg ,v= 15 m/s ,K=1000
K= C(mv²)
1000 = C( 40 x 15²)
C=0.111111
When m = 40 kg and v= 20 m/s
K' = C(mv²)
K= 0.1111 x (40 x 20²)
K' = 1777.777 J
Answer:
B. and D. would be my best guess.
Explanation:
The reason why is because if you lower the resistance, the voltage will be higher, and if you higher the voltage, the resistance would be lower and the voltage would higher.