When the particles<span> of a medium are </span>vibrating at right angles<span> to the </span>direction<span> of energy transport, then the </span>wave<span> is a ____ </span>wave<span>. In transverse </span>waves<span>, </span>particles<span> of the medium </span>vibrate<span> to and from in a </span>direction<span> perpendicular to the </span>direction<span> of energy transport. </span>
Explanation:
temperature o temperatura
Answer:
A student could conclude that the cart gained momentum as it rolled down.
Explanation:
If the cart was allowed to roll down the ramp from rest, it means that the initial velocity of the cart is zero (0). Also, if the final velocity of the cart became 25 cm/s, it means that the velocity of the cart increased from 0 to 25 cm/s.
Therefore, A student could conclude that the cart gained momentum as it rolled down.
Answer:
Velocity 

V = Q + 3Rt²
at t = 0,
= Q + 3r(0) ==> Q
at t = T,
= Q + 3rT²
Work done (W) = ΔKE = 
W = ![\frac{1}{2} m[(Q + 3RT^{2})^{2} - Q^{2}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20m%5B%28Q%20%2B%203RT%5E%7B2%7D%29%5E%7B2%7D%20-%20Q%5E%7B2%7D%5D)
W =
[Q² + 9R²T⁴ + 2Q(3RT²) - Q²]
W =
(9R²T⁴ + 6QRT²)
Explanation:
Differentiate the position.
Find the equation for speed.
Find the initial and final speed.
Use work energy theorem to find the work done by finding the change in kinetic energy.
The answer for this is b 3.500.000j