Answer: The property that will best provide evidence that the samples are solid includes:
--> if the substance has a definite shape,
-->if the substance has a definite volume
--> if it's tightly packed.
Explanation:
According to the kinetic theory of matter, every substance consist of very large number of very small particles called molecules. These molecules, which are made up of atoms that are the smallest particles of a substance that can exist in a free state.
Matter can exist in the following states:
--> Solid state
--> liquid state or
--> Gaseous state.
The general property of a substance that is in gaseous state includes:
--> Definite shape: A substance can be grouped as a solid if it's shape is fixed that is, it doesn't depend on the shape of other materials.
--> Definite volume: A substance can be grouped as a solid if it occupies its own shape. This is due to the force of cohesion among its molecules.
--> Tightly packed: A substance can be grouped as solid if the molecular movements of the particles are negligible.
From the samples under observation by Juan and kym, if the sample that possesses the above described qualities, it is a solid rather than liquid or gas.
Despite the risks, Human populations can be found near volcanoes. This can be associated with the availability of which natural resource?
- <em>Geothermal</em><em> </em><em>energy</em>
<u>Geothermal</u><u> </u><u>energy</u><u> </u><u>is</u><u> </u><u>the</u><u> </u><u>f</u><u>o</u><u>r</u><u>m</u><u> </u><u>of</u><u> </u><u>energy</u><u> </u><u>obtained</u><u> </u><u>from</u><u> </u><u>the</u><u> </u><u>heat</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>earth</u><u>.</u><u> </u><u>Near</u><u> </u><u>volcanoes</u><u> </u><u>the</u><u> </u><u>land</u><u> </u><u>is</u><u> </u><u>more</u><u> </u><u>hot</u><u> </u><u>compared</u><u> </u><u>to</u><u> </u><u>the</u><u> </u><u>normal</u><u> </u><u>areas</u><u>.</u><u> </u><u>So</u><u>,</u><u> </u><u>the</u><u> </u><u>heat</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>lava</u><u> </u><u>will</u><u> </u><u>help</u><u> </u><u>in</u><u> </u><u>producing</u><u> </u><u>Geothermal</u><u> </u><u>energy</u><u>.</u><u>.</u><u>.</u><u>~</u>
Answer:
U = 56877.4 J
Explanation:
The potential energy of a body is that which it possesses because it is located at a certain height above the surface of the earth and can be calculated using the following formula:
U = mgh Formula (1)
Where:
U is the potential energy in Joules (J)
m is the mass of the body in kilograms (kg)
g is the acceleration due to gravity (m/s²)
h is the height at which the body is found from the surface of the earth in meters (m)
Data
m= 81.4 kg
g= 9.8 m/s²
h = 71.3 m
Potential energy of Sean and the parachute at the top of the tower
We replace data in the formula (1)
U = m*g*h
U = (81.4 kg)*(9.8 m/s²)*(71.3 m)
U = 56877.4 N*m
U = 56877.4 J
Nuclear fusion because atomic nuclei combine to form a heavier nucleus. Option A is correct.
<h3>What is nuclear fusion?</h3>
The process by which two or more tiny nuclei unite to generate a bigger nucleus is known as a nuclear fusion reaction.
The more energy it takes to liberate an electron from a smaller atom. This is referred to as binding energy.
As a result, when two little nuclei fuse together, there is more binding energy than when two big nuclei fuse together.
For example, the fusion of two hydrogen atoms produces more energy than the fusion of one helium atom, and surplus energy is expelled into space upon binding.
Nuclear fusion because atomic nuclei combine to form a heavier nucleus.
Hence, option A is correct.
To learn more about nuclear fusion refer to the link;
brainly.com/question/14019172
#SPJ1
Answer:
T=0.372 s, f=2.7 Hz, w=16.9 rad/s, k=179.2 N/m, v= 8.78 m/s, F= 48.4 N
Explanation:
a.)
Period: It is already given in the question "oscillator repeats its motion every 0.372 s".
So T=0.372 s
b)
frequency= f = 1/ T
f = 1/ 0.372
f=2.7 Hz
c).
Angular frequency= w= 2πf
w= 2*π*2.7
w=16.9 rad/s
d)
Spring Constant:
As w=
⇒w²= k/m
⇒k= m*w²
⇒k= 0.628 * 16.9² N/m
⇒k=179.2 N/m
e)
The mass will have maximum speed when it passes through the mean position.
At mean position
Maximum elastic potential energy = Maximum kinetic energy
1/2 k A² = 1/2 m v² ( A is amplitude of oscillation)
⇒ v=
⇒ v=
\
⇒ v= 8.78 m/s
f)
Maximum force will be exerted on the block when it is at maximum distance.
F= k* A ( A is amplitude of oscillation)
F= 179.2 * 0.27 N
F= 48.4 N