The air drag is a force that depends on the speed of an object relative to the wind. Under certain conditions, it can be modeled as:

Where b is a constant.
As a falling object reaches a speed so that its weight is cancelled out by the air drag, the object will reach a maximum velocity.
In a speed vs time gaph, the speed would approach the maximum speed like an asymptote.
On the other hand, since the object falls from rest, the initial speed on the graph must be zero.
Taking these considerations into account, the correct graph for the movement of an object that falls from rest if air drag is not ignored, is option B.
Answer:
d= 7.32 mm
Explanation:
Given that
E= 110 GPa
σ = 240 MPa
P= 6640 N
L= 370 mm
ΔL = 0.53
Area A= πr²
We know that elongation due to load given as



A= 42.14 mm²
πr² = 42.14 mm²
r=3.66 mm
diameter ,d= 2r
d= 7.32 mm
A. Conduct an exam. Thomas might have a drug dependence.
(Please mark Brainliest! :D)
Explanation:
mass, m = 5kg
initial velocity, u = 16m/s
final velocuty, v = -22m/s
change in momentum, ∆p = ?
∆p = m (v-u)
5(-22-16)
5(38)
∆p = 190kgm/s
check the calculations!
They combine as atoms, and separate as ions. When sodium and chlorine atoms come together to form sodium chloride (NaCl), they transfer an electron. The sodium (Na) atom transfers one electron to the chlorine (Cl) atom, so that they both have full outer shells. ... When this happens, the atom is called a positive ion.