Molarity is defined as number of moles of solute in 1 L of solution.
Here, 0.1025 g of Cu is reacted with 35 mL of HNO_{3} to produced Cu^{2+} ions.
The balanced reaction will be as follows:
Cu+3HNO_{3}\rightarrow Cu(NO_{3})_{2}+NO_{2}+H_{2}O
From the above reaction, 1 mole of Cu produces 1 mole of Cu^{2+}, convert the mass of Cu into number of moles as follows:
n=\frac{m}{M}
molar mass of Cu is 63.55 g/mol thus,
n=\frac{0.1025 g}{63.55 g/mol}=0.0016 mol
Now, total molarity of solution, after addition of water is 200 mL or 0.2 L can be calculated as follows:
M=\frac{n}{V}=\frac{0.0016 mol}{0.2 L}=0.008 mol/L=0.008 M
Thus, molarity of Cu^{2+} is 0.008 M.
Answer:
Current
Explanation:
An electric fence used to contain cattle works by transmitting energy through a conductor creating an electric current.
An electric fence is usually connected to an electric power source . The connection brings about the flow of electric charges(current) which is aided by the presence of a conductor. The conductor ensures smooth flow of electric current to achieve the main purpose of the fence.
Answer:
The answer to your question is 8.21 g of H₂O
Explanation:
Data
mas of water = ?
mass of hydrogen = 4.6 g
mass of oxygen = 7.3 g
Balanced chemical reaction
2H₂ + O₂ ⇒ 2H₂O
Process
1.- Calculate the atomic mass of the reactants
Hydrogen = 4 x 1 = 4 g
Oxygen = 16 x 2 = 32 g
2.- Calculate the limiting reactant
Theoretical yield = H₂/O₂ = 4 / 32 = 0.125
Experimental yield = H₂/ O₂ = 4.6/7.3 = 0.630
From the results, we conclude that the limiting reactant is Oxygen because the experimental yield was higher than the theoretical yield.
3.- Calculate the mass of water
32 g of O₂ ---------------- 36 g of water
7.3 g of O₂ --------------- x
x = (7.3 x 36) / 32
x = 262.8 / 32
x = 8.21 g of H₂O
The statement in option B is not correct. B is the correct answer. This is because nuclear fission usually occur in large unstable isotopes, which are bombarded with high speed particles like neutrons, which make them to split into smaller particles. The statement in option A, C and D are true about nuclear fission.