Answer:
0.382g
Explanation:
Step 1: Write the reduction half-reaction
Al³⁺(aq) + 3 e⁻ ⇒ Al(s)
Step 2: Calculate the mass of Al produced when a current of 100. A passes through the cell for 41.0 s
We will use the following relationships.
- 1 mole of electrons has a charge of 96486 C (Faraday's constant)
- 1 mole of Al is produced when 3 moles of electrons pass through the cell.
- The molar mass of Al is 26.98 g/mol.
The mass of Al produced is:

Answer:
A. Energy is transferred to different forms
.
Explanation:
Hello!
In this case, we need to consider the law of conservation of mass and energy which states that mass and energy cannot be neither created nor destroyed, just modified; it means we can rule out B. and C. so far.
Moreover, since D. is actually true for combustion reactions because they are used to provide energy in industrial operations, this is not the concern here because a combustion reaction is not considered.
Therefore the correct option is A. Energy is transferred to different forms as the energy provided by Rose is transferred to the pendulum system
.
Best regards!
Answer : The volume of hydrogen gas at STP is 4550 L.
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 100.0 atm
= final pressure of gas at STP = 1 atm
= initial volume of gas = 50.0 L
= final volume of gas at STP = ?
= initial temperature of gas = 
= final temperature of gas at STP = 
Now put all the given values in the above equation, we get:


Therefore, the volume of hydrogen gas at STP is 4550 L.
It is an ensemble of similar cells