I would say that oceans help regulate weather, gobal warming, and solar radiation, but also depends on the level of carbon dioxide in the atmosphere level. So basically the oceans absorbs heat radiation from the sun and it retains the heat, which then the atmosphere comes in and also helps retain the heat which then releases the heat after sunset into space, regulating weather around the globe, since most of the globe is also covered by oceans and water.
Answer:
Volume = 5.73L
Explanation:
Data;
V1 = 3.75L
P1 = 0.980atm
P2 = 0.641atm
V2 = ?
This question involves the use of Boyle's law, which states that, the volume of a fixed mass of gas is inversely proportional to its pressure provided that temperature remains constant.
Mathematically,
V = kP, k = PV
P1V1 = P2V2 =P3V3=........=PnVn
P1V1 = P2V2
V2 = (P1 * V1) / P2
V2 = (0.980 × 3.75) / 0.641
V2 = 5.73L
The final volume of the gas is 5.73L
Answer:
The answer to your question is: yield = 56.27%
Explanation:
Data
CH3CH2CH2CH2OH (l) → CH3 CH2CH2CH2Br
18.54 ml 1-butanol 15.65 g of 1-bromobutane
% yield = ?
density = 0.81 g/ml
MM = 74 g 1- butanol
MM = 137 g 1-bromobutane
Process
Calculate mass of 1- butanol
density = mass/volume
mass = density x volume
mass = 0.81 x 18.54
mass = 15.02 g of 1-butanol
Theoretical yield
74 g of 1- butanol ----------------- 137 g of 1-bromobutane
15.02 g of 1- butanol ------------- x
x = (15.02 x 137) / 74
x = 27.81 g of 1-bromobutane
% yield = experimental yield / theoretical yield x 100
% yield = 15.65 / 27.81 x 100
% yield = 56.28
Answer: The answer has 7 significant figures
Explanation:
The addition of 190.5 and 42.1014 will give 232.6014. Counting the digits will give 7 significant figures.
Answer:
1. This reaction is <u>(A) Exothermic .</u>
2. When the temperature is decreased the equilibrium constant, K: <u>(A) Increases</u>
3.When the temperature is decreased the equilibrium concentration of Co2:<u> (A) Increases</u>
Explanation:

1. The pink color predominates at low temperatures, indicating that the commodity is preferred.
This is a reaction that is <u>exothermic.</u>
2. As the decrease in the temperature , the equilibrium constant , K ;
equilibrium constant =
=![\frac{[CO^2^+][Cl^-^4]}{CoCl^2^-_4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCO%5E2%5E%2B%5D%5BCl%5E-%5E4%5D%7D%7BCoCl%5E2%5E-_4%7D)
As the temperature drops, the concentration of
and
rises, and K rises as well , thus it <u>increases </u>.
3. The equilibrium concentration of
decreases as the temperature decreases:
When the temperature is lowered, the equilibrium shifts to the right , that is it <u>increases.</u>