Hydrogen. It is made up of one electron and one proton.
<span>the lithosphere, which contains all of the cold, hard, solid rock of the planet's crust (surface), the hot semi-solid rock that lies underneath the crust, the hot liquid rock near the center of the planet, and the solid iron core (center) of the planet </span>the hydrosphere, which contains all of the planet's solid, liquid, and gaseous water,and the atmosphere, which contains all of the planet's air
Answer:
450g of coke (C)
Explanation:
Step 1:
The balanced equation for the reaction is given below:
3C(s) + 2SO2(g) —> CS2(s) + 2CO2(g)
Step 2:
Determination of the mass of C that reacted and the mass of CS2 produced from the balanced equation.
This is illustrated below:
Molar Mass of C = 12g/mol
Mass of C from the balanced equation = 3 x 12 = 36g
Molar Mass of CS2 = 12 + (32x2) = 12 + 64 = 76g/mol.
From the balanced equation above, 36g of C reacted to produce 76g of CS2.
Step 3:
Determination of the mass of C required to produce 950g of CS2. This is illustrated below:
From the balanced equation above, 36g of C reacted to produce 76g of CS2.
Therefore, Xg of C will react to produce 950g of CS2 i.e
Xg of C = (36 x 950)/76
Xg of C = 450g
From the calculations made above, 450g of coke (C) is needed to produce 950g of CS2.
Answer:
Each electrode attracts ions that are of the opposite charge. Positively charged ions, or cations, move toward the electron-providing cathode, which is negative; negatively charged ions, or anions, move toward the positive anode.
Answer: 
Explanation:

cM 0 0
So dissociation constant will be:

Given: c = 0.15 M
pH = 1.86
= ?
Putting in the values we get:
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![1.86=-log[H^+]](https://tex.z-dn.net/?f=1.86%3D-log%5BH%5E%2B%5D)
![[H^+]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01)
![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)


As ![[H^+]=[ClCH_2COO^-]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BClCH_2COO%5E-%5D%3D0.01)

![K_a=1.67\times 10^{-3]](https://tex.z-dn.net/?f=K_a%3D1.67%5Ctimes%2010%5E%7B-3%5D)
Thus the vale of
for the acid is 