Answer: a) The concentration after 8.8min is 0.17 M
b) Time taken for the concentration of cyclopropane to decrease from 0.25M to 0.15M is 687 seconds.
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
a) concentration after 8.8 min:



b) for concentration to decrease from 0.25M to 0.15M


You can have as many controls as necessary, But they must remain equal at all times in order to get the most accurate results
They can decay through one of three ways:
alpha decay
beta decay and
gamma decay
ALPHA- particle with two neutrons and two protons is ejected from the nucleus of the radioactive atom. this particle released is called an alpha particle. Only occurs with heavy metals.
BETA- pretty much when a proton is transformed into a neutron, or vise versa. in a beta minus decay, the nuetron decays into a proton and in a beta plus decay, a proton decays into a neutron
GAMMA- the nucleus changes from a high energy state to a low energy state by releasing electromagnetic radiation (photons). the number of protons and neutrons stay the same during this reaction therefore the element is still the same.
Explanation:
P1V1 = nRT1
P2V2 = nRT2
Divide one by the other:
P1V1/P2V2 = nRT1/nRT2
From which:
P1V1/P2V2 = T1/T2
(Or P1V1 = P2V2 under isothermal conditions)
Inverting and isolating T2 (final temp)
(P2V2/P1V1)T1 = T2 (Temp in K).
Now P1/P2 = 1
V1/V2 = 1/2
T1 = 273 K, the initial temp.
Therefore, inserting these values into above:
2 x 273 K = T2 = 546 K, or 273 C.
Thus, increasing the temperature to 273 C from 0C doubles its volume, assuming ideal gas behaviour. This result could have been inferred from the fact that the the volume vs temperature line above the boiling temperature of the gas would theoretically have passed through the origin (0 K) which means that a doubling of temperature at any temperature above the bp of the gas, doubles the volume.
From the ideal gas equation:
V = nRT/P or at constant pressure:
V = kT where the constant k = nR/P. Therefore, theoretically, at 0 K the volume is zero. Of course, in practice that would not happen since a very small percentage of the volume would be taken up by the solidified gas.
Answer:
In the roller coasters the potential energy that is given is the gravitational potential energy, which this energy increases its value as the object moves away from the earth, that is to say, the more height the roller coaster acquires the more gravitational potential energy it will have, and Said train where people usually get on the roller coaster will descend or descend with greater acceleration.
This gravitational potential energy once the mountain begins to descend or descend is converted into kinetic energy
Explanation:
This that we wrote above is considering that the roller coaster does not have curved routes but rectilinear, in the case that it had curved routes, a force would be added in addition to those written that is the centripetal force, it is the same force that appears in the centrifuges or dryers of clothes or the same washing machine. This force, the centripetal force is the force that draws a moving object, in a curvilinear path, towards the center of the curvature.