Answer:
(ones)2 (tenths)2.4 (hundredths)2.38
Step-by-step explanation:
Just sayin', you COULD use Google's calculator....
-5 or more, round the next number up.
-5 or less round the next number down.
<span>So Steward scored 5 for the first round, that will be our constant.
There is 3 more rounds for him to score at least 30.
at least tells us this is a greater than or equal to 5+3p<30</span>
Answer:

Step-by-step explanation:



Answer:
We want to find:
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D)
Here we can use Stirling's approximation, which says that for large values of n, we get:

Because here we are taking the limit when n tends to infinity, we can use this approximation.
Then we get.
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n} = \lim_{n \to \infty} \frac{\sqrt[n]{\sqrt{2*\pi*n} *(\frac{n}{e} )^n} }{n} = \lim_{n \to \infty} \frac{n}{e*n} *\sqrt[2*n]{2*\pi*n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7B%5Csqrt%7B2%2A%5Cpi%2An%7D%20%2A%28%5Cfrac%7Bn%7D%7Be%7D%20%29%5En%7D%20%7D%7Bn%7D%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bn%7D%7Be%2An%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D)
Now we can just simplify this, so we get:
![\lim_{n \to \infty} \frac{1}{e} *\sqrt[2*n]{2*\pi*n} \\](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B1%7D%7Be%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D%20%5C%5C)
And we can rewrite it as:

The important part here is the exponent, as n tends to infinite, the exponent tends to zero.
Thus:

<span>First we have to determine the slope of each lines by transforming to the slope-intercept form:
y=(3x-7/)4; m2= ¾y=(12x+6)/5, m3 = 12/5
The formula to be used in the proceeding steps is a=tan^-1(m1-m2)/1+m1m2=tan^-1(m1-m2)/1+m1m2
substituting, a=tan^-1(m1-3/4)/1+3m1/4=tan^-1(m1-12/5)1+12m1/5) =>(4m1-3)/(4+3m1)=(5m1-12)/(5+12m1)m1 = -1applying this slope
y -y1 = m(x-x1)
when y1 = 5 and x1 = 4 then,
y - 5 = -1(x-4)
y = -x +4+ 5 ; y = -x +9</span>