Answer:
Ionic
Explanation:
If A does not have electron to bond, it just receives one electron from B.
It can´t be covalent because A don´t have any electrons to bond with B.
Answer:
300000Pa or 3×10^5 Pa
Explanation:
Since the problem involves only two parameters of volume and pressure, the formula for Boyle's law is suitably used.
Using Boyle's law
P1V1 = P2V2
P1 is the initial pressure = 1.5×10^5Pa
V1 is the initial volume = 0.08m3
P2 is the final pressure (required)
V2 is the final volume = 0.04 m3
From the formula, P2 = P1V1/V2
P2 = 1.5×10^5 × 0.08 ÷ 0.04
= 300000Pa or 3×10^5 Pa.
Answer:
2,2,4-Trimethyl-pentane
Explanation:
Structural characteristics of the compound is as follows:
- Has five methyl group
- Has one quaternary carbon
- No. double bond
- Gives four monochloro substitution products
Compound must have straight chain of 5 carbons.
Three methyl substituents are attached to 2 and 4 carbons.
Therefore, IUPAC name of the compound will be 2,2,4-Trimethyl-pentane.
Answer: C.)
Explanation:
i got it right on a unit test!
but it might be something else if there arranged different!
sorry!
Answer:
Explanation:
Given the details, we can say that
Pure methanol is a volatile solvent as the vapour pressure has a high value. This means that methanol - methanol intermolecular forces are weak in comparisson to water - water forces. When having about 30% of water in a methanol mixture, the mixture Pv decreased, showing that it is not a volatile mixture, so then there are strong intermolecular interactions between methanol - water, part of it due to the hydrogen bonds.