Answer:
To calculate molarity, divide the number of moles of solute by the volume of the solution in liters. If you don't know the number of moles of solute but you know the mass, start by finding the molar mass of the solute, which is equal to all of the molar masses of each element in the solution added together.
Explanation:
try starting with 35.0 and dived it by the volume
Answer:
Approximately 1.9 kilograms of this rock.
Explanation:
Relative atomic mass data from a modern periodic table:
To answer this question, start by finding the mass of Pb in each kilogram of this rock.
89% of the rock is
. There will be 890 grams of
in one kilogram of this rock.
Formula mass of
:
.
How many moles of
formula units in that 890 grams of
?
.
There's one mole of
in each mole of
. There are thus
of
in one kilogram of this rock.
What will be the mass of that
of
?
.
In other words, the
in 1 kilogram of this rock contains
of lead
.
How many kilograms of the rock will contain enough
to provide 1.5 kilogram of
?
.
Answer:
c. rate=−1/2Δ[HBr]/Δt=Δ[H2]/Δt=Δ[Br2]/Δt
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, the rate is given as:
![rate=-\frac{1}{2} \frac{\Delta [HBr]}{\Delta t}=\frac{\Delta [Br_2]}{\Delta t} =\frac{\Delta [H_2]}{\Delta t}](https://tex.z-dn.net/?f=rate%3D-%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7B%5CDelta%20%5BHBr%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B%5CDelta%20%5BBr_2%5D%7D%7B%5CDelta%20t%7D%20%3D%5Cfrac%7B%5CDelta%20%5BH_2%5D%7D%7B%5CDelta%20t%7D)
It is necessary to remember that each concentration to time interval is divided into the stoichiometric coefficient, that is why HBr has a 1/2. Moreover, the concentration HBr is negative since it is a reactant and it has a negative rate due to its consumption.
Therefore, the answer is:
c. rate=−1/2Δ[HBr]/Δt=Δ[H2]/Δt=Δ[Br2]/Δt
Best regards.
Answer:
44° to 45°
Explanation:
The altitude of Polaris star when viewed from New York City is somewhat between 44° to 45°. However, Polaris is directly overhead at the North Pole (90° of latitude); in other words, the angle between Polaris and the horizon at the North Pole is 90°. This angle is called "the altitude" of Polaris.
Answer: The total energy, in kilojoules, that is needed to turn a 46 g block of ice at -25 degrees C into water vapor at 100 degrees C is 11.787 kJ.
Explanation:
Given: Mass = 46 g
Initial temperature = 
Final temperature = 
Specific heat capacity of ice = 2.05 
Formula used to calculate the energy is as follows.

where,
q = heat energy
m = mass
C = specific heat capacity
= initial temperature
= final temperature
Substitute the values into above formula as follows.

Thus, we can conclude that the total energy, in kilojoules, that is needed to turn a 46 g block of ice at -25 degrees C into water vapor at 100 degrees C is 11.787 kJ.