<span>The escape of gas through a small hole in a container is called effusion. This phenomenon happens when the diameter of the hole is small enough compared to the mean free path of the gas particles. This is governed by Graham's Law which states that the rate of effusion is inversely proportional to the molecular weight of the gas.</span>
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.
The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.
The correct answer is C the suns energy from the earth
Answer:
60 grams of ice will require 30.26 calories to raise the temperature 1°C.
Explanation:
The amount of heat (Q) to raise the temperature of 60.0 g of ice by 1°C can be calculated from:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released or absorbed by the system.
m is the mass of the ice (m = 60.0 g).
c is the specific heat capacity of ice (c = 2.108 J/g.°C).
ΔT is the temperature difference (ΔT = 1.0 °C).
∴ Q = m.c.ΔT = (60.0 g)(2.108 J/g.°C)(1.0 °C) = 126.48 J.
<em>It is known that 1.0 cal = 4.18 J.</em>
<em>∴ Q = (126.48 J)(1.0 cal / 4.18 J) = 30.26 cal.</em>
Answer:
NaCl + Ag(NO₃) --> Na(NO₃) + AgCl
Explanation:
Chemical equation:
NaCl + Ag(NO₃) --> Na(NO₃) + AgCl
The given reaction represent the double displacement reaction. Anion and cation of both reactant exchange with each others.
The anion of sodium chloride(Cl⁻) combine with cation of silver nitrate Ag⁺ and NO₃⁻ combine with Na⁺.
The third equation is correct while others are in correct.
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AC +BD
SORRY CAUSE IDK IF THAT HELPED :(