I don’t understand the question
Answer:
molar mass = 180.833 g/mol
Explanation:
- mass sln = mass solute + mass solvent
∴ solute: unknown molecular (nonelectrolyte)
∴ solvent: water
∴ mass solute = 17.5 g
∴ mass solvent = 100.0 g = 0.1 Kg
⇒ mass sln = 117.5 g
freezing point:
∴ ΔTc = -1.8 °C
∴ Kc H2O = 1.86 °C.Kg/mol
∴ m: molality (mol solute/Kg solvent)
⇒ m = ( - 1.8 °C)/( - 1.86 °C.Kg/mol)
⇒ m = 0.9677 mol solute/Kg solvent
- molar mass (Mw) [=] g/mol
∴ mol solute = ( m )×(Kg solvent)
⇒ mol solute = ( 0.9677 mol/Kg) × ( 0.100 Kg H2O )
⇒ mol solute = 0.09677 mol
⇒ Mw solute = ( 17.5 g ) / ( 0.09677 mol )
⇒ Mw solute = 180.833 g/mol
Answer:
30 minutes
Explanation:
If the plane is going 600 km/h
divide the length and time and it would be half of that, so 300 km would take 30 mins.
Answer:
Because only a few bacterias can "fix" the atmosphere nitrogen.
Explanation:
The nitrogen at the atmosphere is in the form of N₂ and represents 78% of the atmosphere composition. The element is part of the constitution of nucleic acids and proteins, so the living beings needed them.
However, the animals and the plants can't catch the N₂. Some bacterias that live in mutualism with plants have this ability, and they "fix" the atmosphere nitrogen, transforming the N₂ in the ions nitrite (NO₃⁻) or ammonia (NH₃), which can be caught by the plants.
Them, when the primary consumers eat the plants they catch the nitrogen, which will be passed through the food chain.
So, it's difficult to pull nitrogen from the atmosphere into the nitrogen cycle of the biosphere because only a few bacterias can do it.
Ionization energy refers to the amount of energy needed to remove an electron from an atom. Ionization energy decreases as we go down a group. Ionization energy increases from left to right across the periodic table.
<h3>What is ionization energy?</h3>
Ionization is the process by which ions are formed by the gain or loss of an electron from an atom or molecule.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period but decreases along a group.
Smaller is the size of an atom more will be the force of attraction between its protons and electrons. Hence, more amount of energy is required to remove an electron.
Thus, we can conclude that the energy required to remove an electron from a gaseous atom is called ionization energy.
Learn more about the ionization energy here:
brainly.com/question/14294648
#SPJ1