Answer:
The temperature is very hot.
Explanation:
The gas around the planet traps the suns heat and makes it the hottest planet in our solar system.
Answer:
A. Strong initial heating caused some of the hydrate sample to spatter out of the crucible.
Explanation:
Hi
The percentage of water in the sample is lower than expected.
A. Strong initial heating caused some of the hydrate sample to spatter out of the crucible:
If part of the sample is splashed from the crucible the mass of water detected will be less.
B. The dehydrated sample absorbed moisture after heating:
If the sample absorbs water after heating the percentage of water would be higher than expected.
C. The amount of the hydrate sample used was too small:
Depending on the sample size, different procedures can be chosen for analysis.
D. The crucible was not heated to constant mass before use:
In many occasions the crucible is heated next to the sample and not in previous form.
E. Excess heating caused the dehydration sample to decompose:
If the sample decomposes during heating, the analysis should be discarded.
success with your homework
Answer:

Explanation:
Hello!
In this case, considering the partial Dalton's law of partial pressures, we can notice that the total pressure equals the pressure of steam and the pressure of hydrogen, which can be determined as shown below:

Thus, by using the ideal gas law, we can compute the moles of hydrogen as shown below:

Best regards!
Answer:6.94
Explanation:
Molar mass of CaCO3=40+12+16×3
=40+12+48=100g/mol
Moles=mass of substance/molar mass
=97mg/100g=0.097/100=0.00097moles/L.
PH=-log[CaCo3]=-log(0.00097)=6.94
P.s it's log to base e
Answer:
Isotopes of an element share the same number of protons but have different numbers of neutrons. Let's use carbon as an example. There are three isotopes of carbon found in nature – carbon-12, carbon-13, and carbon-14. All three have six protons, but their neutron numbers - 6, 7, and 8, respectively - all differ.
Explanation: