The pH meter measure the concentration of the hydrogen(+) ion, and the concentration of Hydroxide(-). Hydrogen is acidic, Hydroxide is basic.
The answer is D.
Answer:
a) ppm
b) ppm
c) ppb
d) ppt
e) ppb
Explanation:
a) You know that 1000 g are 1 kg, and 1000 kg are 1 ton, so (1000)*(1000) g are 1 ton, so 1,000,000 grams are one ton.
b) 1000 mg are 1 g, and 1000 g are 1 liter, so 1,000,000 grams are one liter.
c) You know that 1000 ug are 1 mg, so with the b), we just need to multiply the answer by 1000, so 1,000,000,000 ug are 1 liter.
d) The same as c, 1000 ng are 1 mg. So we are talkinf of ppt.
e) 1000 mg are 1 g. And 1000 g are 1 kg, then 1000 kg are one ton. So 1,000,000,000 mg are one ton.
The freezing point of a 1.324 m solution, prepared by dissolving biphenyl into naphthalene, is 71.12 ° C.
A solution is prepared by dissolving biphenyl into naphthalene. We can calculate the freezing point depression (ΔT) for naphthalene using the following expression.

where,
- i: van 't Hoff factor (1 for non-electrolytes)
- Kf: cryoscopic constant
- m: molality
The normal freezing point of naphthalene is 80.26 °C. The freezing point of the solution is:

The freezing point of a 1.324 m solution, prepared by dissolving biphenyl into naphthalene, is 71.12 ° C.
Learn more: brainly.com/question/2292439
Answer:
it is the app for homework not for nonsense things.
do good be good and see good and think good
Answer:
Mass = 8.46 g
Explanation:
Given data:
Mass of water produced = ?
Mass of glucose = 20 g
Mass of oxygen = 15 g
Solution:
Chemical equation:
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 20 g/ 180.16 g/mol
Number of moles = 0.11 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 15 g/ 32 g/mol
Number of moles = 0.47 mol
now we will compare the moles of water with oxygen and glucose.
C₆H₁₂O₆ : H₂O
1 : 6
0.11 : 6/1×0.11 = 0.66
O₂ : H₂O
6 : 6
0.47 : 0.47
Less number of moles of water are produced by oxygen thus it will limit the yield of water and act as limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 0.47 mol ×18 g/mol
Mass = 8.46 g