Answer:
i) Δs  = 196 - 144 = 52 feet
ii) Δs / Δt = 104 feet/second 
iii) Therefore the velocity at t = 3 is v(3) = 96 feet/second
Step-by-step explanation:
a.) i) s =  
 
    ii) at 3 seconds the distance traveled 
    iii) at 3.5 seconds the distance traveled 
   iv) Δs  = 196 - 144 = 52 feet
b) Average velocity over [3, 3.5] = Δs / Δt  = 52/(0.5) = 104 feet/second 
c) the average velocity over the interval
   I) i) [3, 3.01] 
      ii) 
      iii) Δs  = 144.962 - 144 = 0.962 feet
      iv) Average velocity over [3, 3.01] = Δs / Δt  = 0.962/(0.01) = 
           96.2 feet/second 
 II) i) [3, 3.001] 
      ii)  
 
      iii) Δs  = 144.096 - 144 = 0.096 feet
      iv) Average velocity over [3, 3.001] = Δs / Δt  = 0.096/(0.001) = 
          96 feet/second 
 III) i) [3, 3.0001] 
      ii) 
      iii) Δs  = 144.0096 - 144 = 0.0096 feet
      iv) Average velocity over [3, 3.0001] = Δs / Δt  = 0.0096/(0.0001) = 
          96 feet/second 
 IV) i) [2.9999, 3] 
      ii) 
      iii) Δs  = 144 - 143.99 = 0.0096 feet
      iv) Average velocity over [2.9999, 3] = Δs / Δt  = 0.0096/(0.0001) = 
          96 feet/second 
V) i) [2.999, 3] 
      ii) 
      iii) Δs  = 144 - 143.904 = 0.09598 feet
      iv) Average velocity over [2.999, 3] = Δs / Δt  = 0.09598/(0.001) = 
          95.98 feet/second
VI) i) [2.99, 3] 
      ii) 
      iii) Δs  = 144 - 143.042 = 0.098 feet
      iv) Average velocity over [2.99, 3] = Δs / Δt  = 0.098/(0.01) = 
          98 feet/second
  Therefore the velocity at t = 3 is v(3) = 96 feet/second