Answer: the first integer is -6 and the second integer is -4
Step-by-step explanation:
NOTES:
- squared (²) means multiply that number by itself 2 times
- cubed (³) means multiply that number by itself 3 times
- square root (√) means 2 numbers multiplied by itself on the inside simplify to 1 of that number on the outside of the radical
- cubed root (∛) means 3 numbers multiplied by itself on the inside simplify to 1 of that number on the outside of the radical
Answer: (C) 41
<u>Step-by-step explanation:</u>
![\quad 6^2+\sqrt[3]{125} \\= 6 \cdot 6+\sqrt[3]{5\cdot 5 \cdot 5}\\= 36 + 5\\= 41](https://tex.z-dn.net/?f=%5Cquad%206%5E2%2B%5Csqrt%5B3%5D%7B125%7D%20%5C%5C%3D%206%20%5Ccdot%206%2B%5Csqrt%5B3%5D%7B5%5Ccdot%205%20%5Ccdot%205%7D%5C%5C%3D%2036%20%2B%205%5C%5C%3D%2041)
***************************************************************************************
Answer: (C) 10
<u>Step-by-step explanation:</u>
![\bigg(\dfrac{7}{3}\times \sqrt[3]{27}-2\bigg)\times \dfrac{1}{5} + \sqrt{81}](https://tex.z-dn.net/?f=%5Cbigg%28%5Cdfrac%7B7%7D%7B3%7D%5Ctimes%20%5Csqrt%5B3%5D%7B27%7D-2%5Cbigg%29%5Ctimes%20%5Cdfrac%7B1%7D%7B5%7D%20%2B%20%5Csqrt%7B81%7D)
![=\bigg(\dfrac{7}{3}\times \sqrt[3]{3\cdot 3 \cdot 3}-2\bigg)\times \dfrac{1}{5} + \sqrt{9\cdot 9}](https://tex.z-dn.net/?f=%3D%5Cbigg%28%5Cdfrac%7B7%7D%7B3%7D%5Ctimes%20%5Csqrt%5B3%5D%7B3%5Ccdot%203%20%5Ccdot%203%7D-2%5Cbigg%29%5Ctimes%20%5Cdfrac%7B1%7D%7B5%7D%20%2B%20%5Csqrt%7B9%5Ccdot%209%7D)





***************************************************************************************
8² = 8 · 8 = 64 11² = 11 · 11 = 121
5³ = 5 · 5 · 5 = 125 3³ = 3 · 3 · 3 = 27
![\sqrt[3]{64}=\sqrt[3]{4\cdot 4\cdot 4}=4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%3D%5Csqrt%5B3%5D%7B4%5Ccdot%204%5Ccdot%204%7D%3D4)
![\sqrt[3]{8000}=\sqrt[3]{20\cdot 20\cdot 20}=20](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B8000%7D%3D%5Csqrt%5B3%5D%7B20%5Ccdot%2020%5Ccdot%2020%7D%3D20)
Your answer should be C! Hope that helps
Answer:
Step-by-step explanation:
lets say "a" for the empty line,
for small triangle; y^2 = 2^2 + x^2
right triangle; we say a for empty line, a^2= 6^2 + x^2
and big triangle covering both triangles, 8^2 = y^2 + a^2
lets add left sides and right sides in each;
x^2 + 4 + x^2 + 36 + y^2 + a^2 = y^2 + a^2 + 64 and we can delete same things for both sides
y^2 and a^2 can be deleted and 4+36 - 64
2(x^2)=24
x^2= 12
and x will be √12
so, y^2 = x^2 + 2^2 which means y^2 = 12+4 y=16