1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solong [7]
4 years ago
7

Rectangle ABCD is graphed in the coordinate plane. The following are the vertices of the rectangle: A(-4, -2), B(-2, -2), C(-2,

7)C(−2,7)C, D(-4, 7
What is the area of rectangle ABCD?

Mathematics
1 answer:
vladimir2022 [97]4 years ago
3 0

Answer:

The area of rectangle ABCD is 18\ units^2

Step-by-step explanation:

Plot the figure to better understand the problem

we have the vertices

A(-4, -2), B(-2, -2), C(-2, 7), D(-4, 7)

see the  attached figure

The area of the rectangle is equal to

A=LW

where

L is the length

W is the width

In this problem we have

L=BC=7-(-2)=9\ units ---> difference of the y-coordinates

W=AB=-2-(-4)=2\ units ---> difference of the x-coordinates

substitute

A=(9)(2)=18\ units^2

You might be interested in
Find the extraneous solution of the equation |9 – 4x|= -5x .
just olya [345]
Answer:
x = 1

Step-by-Step Solution:
Look at attached photo.

6 0
4 years ago
Show all work to identify the asymptotes and zero of the function f(x) = 6x / x^2 - 36
eduard

Answer:

Zero of the function f(x) is at x = 0

Vertical Asymptotes at x = ±6

Horizontal Asymptotes at y = 0

Step-by-step explanation:

<h3>Vertical Asymptotes </h3>

For a given function f(x):

Vertical Asymptotes are obtained at those values of x, where the function f(x) tends to infinity, I.e.,

<em>When</em><em> </em><em>x</em><em> </em><em>approaches</em><em> </em><em>some</em><em> </em><em>constant</em><em> </em><em>value</em><em> </em><em>b</em><em>u</em><em>t</em><em> </em><em>th</em><em>e</em><em> </em><em>curve</em><em> </em><em>moves</em><em> </em><em>towards</em><em> </em><em>infinity</em><em>.</em><em> </em>

  • If f(x) is a fraction, it'll tend to infinity when it's denominator becomes zero.

Vertical Asymptotes of the given function can be obtained by walking thru the following steps:

<u>Step I</u>

(Factorise the numerator and denominator)

\mathsf{ f(x) = \frac{6x}{ {x}^{2} - 36 } }

<em>x</em><em>²</em><em> </em><em>-</em><em> </em><em>36</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>facto</em><em>rised</em><em> </em><em>into</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em>)</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>and</em><em>,</em><em> </em><em>ofcourse</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>write</em><em> </em><em>6</em><em>x</em><em> </em><em>as</em><em> </em><em>6</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>0</em><em>)</em><em> </em>

\mathsf{ f(x) = \frac{6(x - 0)}{ (x + 6)(x - 6) } }

<u>Step</u><u> </u><u>II</u>

(Reduce the fraction to its simplest form by canceling out the common factors)

<em>There aren't any common factors in the numerator and denominator in this case.</em>

<u>Step</u><u> </u><u>III</u>

(Look for the values of x which cause the denominator to be zero)

<em>If</em><em> </em><em>we</em><em> </em><em>put</em><em> </em>x = 6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em>

Also,

<em>If</em><em> </em><em>we</em><em> </em><em>substitute</em><em> </em><em>x</em><em> </em><em>with</em><em> </em> -6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em><em>.</em><em> </em>

The two values of x indicate the two Vertical Asymptotes of the function f(x).

Therefore,

<u>Vertical</u><u> </u><u>Asymptotes</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>function</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>are</u><u>:</u>

\boxed{ \mathsf{x =  \pm6}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3 /><h3>Horizontal Asymptotes:</h3>

Horizontal Asymptotes are obtained When x tends to infinity and y approaches some constant value.

I'll be using the concept of limits for this.

\mathsf{y = \frac{6x}{ {x}^{2} - 36 }  }

<em>dividing</em><em> </em><em>and</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>x</em><em>²</em><em> </em><em>(</em><em>Yep</em><em>!</em><em> </em><em>so</em><em> </em><em>if</em><em> </em><em>x</em><em> </em><em>becomes</em><em> </em><em>infinity</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em>²</em><em> </em><em>all</em><em> </em><em>such</em><em> </em><em>terms</em><em> </em><em>become</em><em> </em><em>0</em><em>,</em><em> </em><em>'</em><em>cause</em><em> </em><em>1</em><em>/</em><em> </em><em>∞</em><em> </em><em>is</em><em> </em><em>0</em><em>)</em><em> </em>

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6x}{ {x}^{2} } }{  \frac{ {x}^{2} - 36 }{ {x}^{2} }  } ) }

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6}{ x } }{  1-  \frac{36 }{ {x}^{2} }  } ) }

Substitute x with ∞, you get zero/ 1

\implies  \boxed{\mathsf{y = 0}}

So, the horizontal Asymptote of the function is y = 0, that is the x axis

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>Zeroes of a function:</h3>

The values of x that reduces f(x) to zero are called the zeroes of f(x).

Here, only x = 0 acts as the zero of the function.

[NOTE:

  • For finding <u>Vertical Asymptotes</u><u>,</u>Equate the denominator to 0. And
  • For finding <u>Zeroes</u><u>,</u> Equate the numerator to 0]

__________________

[That's what it's graph looks like. ]

3 0
3 years ago
So im really confused by this and could use some help.
Otrada [13]

Answer:

Nancy fits the equation.

Step-by-step explanation:

I think they're asking which gorilla fits the equation.

2b - 15 = 605

<em>Add 15 to both sides</em>

2b=620

<em>Divide both sides by 2</em>

b=310

The only gorilla who weighs 310 pounds is Nancy.

5 0
4 years ago
A puzzle box has a height of 27 centimeters. It has a base with an area of 220 square centimeters. What is the volume, in cubic
jonny [76]

Answer:

5,940 cubic centimeters

Step-by-step explanation:

Volume of puzzle box

= Area of base*Height

= 220*27

= 5,940 cubic centimeters

3 0
3 years ago
Help me please I just don’t get it ‍♀️
ss7ja [257]

Answer:

\large\boxed{1.\ the\ slope\ is\ \dfrac{1}{4}}\\\boxed{2.\ y=3x-5}\\\boxed{3.\ (3, 6)}

Step-by-step explanation:

\text{Let}\ k:y=m_1x+b_1\ \text{and}\ l:y=m_2x+b_2.\\\\l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_2}\\\\l\ \parallel\ k\iff m_1=m_2\\\\m-slope\\b-y-intercept\to(0,\ b)\\\\1.\\\\y=-4x+1\to m_1=-4\\\\m_2=-\dfrac{1}{-4}=\dfrac{1}{4}

2.\\y=3x+2\to m_1=3\\\\m_2=3,\ b=-5\\\\y=3x-5

\text{Calculate}\ a\ \text{and}\ b:\\\\a=\dfrac{6-(-9)}{5}=\dfrac{15}{5}=3\\\\b=\dfrac{8-(-2)}{5}=\dfrac{10}{5}=2\\\\\text{Calculate the coordinates of a point:}\\\\x=-9+4a\to x=-9+4(3)=-9+12=3\\\\y=-2+4b\to y=-2+4(2)=-2+8=6

3 0
3 years ago
Other questions:
  • 6 2/3 * -4 1/5 i really need help
    8·1 answer
  • Which statement proves that quadrilateral UWXY is a parallelogram? A. Diagonals UX and WY bisect each other B. Diagonals UX and
    11·1 answer
  • Maggs invests $10,250 at a rate of 9%, compounded weekly. To the nearest whole dollar, find the value of the investment after 7
    13·1 answer
  • Line a is parallel to line b. Which statement about lines a and b is true?
    8·2 answers
  • Determine the equation of the line connecting the points (0,-1) and (2,3)
    9·1 answer
  • Which graph can be used to find the solution(s) to 8 – 4x = 2x – 4?
    14·2 answers
  • An airplane descends 3.5 miles to an elevation of 5.25 miles. Find the elevation of the plane before its
    15·1 answer
  • Which expression is a perfect cube?
    13·1 answer
  • In a storeroom,there are 30 blue balls,48 green balls,some red balls and some white balls. there are 3 times as many green balls
    10·1 answer
  • PLEASE HELP ME !!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!