
Recall that a circle of radius 2 centered at the origin has equation

where the positive root gives the top half of the circle in the x-y plane. The definite integral corresponds to the area of the right half of this top half. Since the area of a circle with radius

is

, it follows that the area of a quarter-circle would be

.
You have

, so the definite integral is equal to

.
Another way to verify this is to actually compute the integral. Let

, so that

. Now

Recall the half-angle identity for cosine:

This means the integral is equivalent to
1cm= 10mm
So you do 368 divided by 80 which is 4.6mm
Answer:
![A)\ \ \ \ \left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=A%29%5C%20%5C%20%5C%20%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given the matrix:
, it's inverse is calculated using the formula:
![\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]^{-1}=\frac{1}{det\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] }\left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7Bdet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dd%26-b%5C%5C-c%26a%5C%5C%5Cend%7Barray%7D%5Cright%5D)
#Therefore, we calculate as;
![\frac{1}{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right] }\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right] \\\\\\\\\#det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right] =1\\\\\\\\=\frac{1}{1}\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right] \\\\\\\\=\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bdet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%265%5C%5C3%268%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5C%5C%5C%23det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%265%5C%5C3%268%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D1%5C%5C%5C%5C%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Hence, the inverse of the matrix is ![\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
11, 12, 13, 14, 15, 16, 17, 18, 19 Sorry if it doesn't help, I'm being too obvious
Answer:
A
Step-by-step explanation:
The farther you move through x, the more y decreases