Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
Answer:
They have fewer hydrogen atoms attached to the carbon chain than alkanes
Explanation:
Let's compare ethane (an alkane) with ethene (an alkene) and ethyne (an alkyne):
- Ethane's formula is C₂H₄, while ethene's is C₂H₄ and ethyne's C₂H₂.
As you can see, alkenes and alkynes have fewer hydrogen atoms attached to the carbon chain due to them having multiple bonds between the carbon atoms.
The following reaction gives a product with the molecular formula C₄H₈O₂. The diagram of the structure of the product can be seen in the image attached below.
The reaction between C₂H₂(ONa)₂ and C₂H₄Br results in the formation of the product C₄H₈O₂ and 2NaBr.
This reaction undergoes an SN₂ mechanism since there is no stable carbocation formed. In the reaction -O⁻Na⁺ attacks the ortho position in C₂H₄Br to form C₄H₈O₂.
In SN₂ mechanism is a nucleophilic substitution reaction where one bond is formed while another one is broken simultaneously.
The mechanism for the reaction can be seen in the image attached below.
Learn more about nucleophilic substitution reaction here:
brainly.com/question/4699407?referrer=searchResults
Answer: E. none of these
Explanation: because the f-block element is n-2