(4) total number of valence electrons, because they exist in the same group.
Answer:

Explanation:
1. Calculate the initial moles of acid and base

2. Calculate the moles remaining after the reaction
OH⁻ + H₃O⁺ ⟶ 2H₂O
I/mol: 0.0053 0.005 00
C/mol: -0.00500 -0.005 00
E/mol: 0.0003 0
We have an excess of 0.0003 mol of base.
3. Calculate the concentration of OH⁻
Total volume = 53 mL + 25.0 mL = 78 mL = 0.078 L
![\text{[OH}^{-}] = \dfrac{\text{0.0003 mol}}{\text{0.078 L}} = \textbf{0.0038 mol/L}\\\\\text{The final concentration of OH$^{-}$ is $\large \boxed{\textbf{0.0038 mol/L}}$}](https://tex.z-dn.net/?f=%5Ctext%7B%5BOH%7D%5E%7B-%7D%5D%20%3D%20%5Cdfrac%7B%5Ctext%7B0.0003%20mol%7D%7D%7B%5Ctext%7B0.078%20L%7D%7D%20%3D%20%5Ctextbf%7B0.0038%20mol%2FL%7D%5C%5C%5C%5C%5Ctext%7BThe%20final%20concentration%20of%20OH%24%5E%7B-%7D%24%20is%20%24%5Clarge%20%5Cboxed%7B%5Ctextbf%7B0.0038%20mol%2FL%7D%7D%24%7D)
Answer:
Element Symbol # of Atoms
Iron Fe 2
Oxygen O 12
Sulfur S 3
Answer:
Between carbon and silicon, silicon element has the strongest attraction between its nucleus and its valence electrons.
because silicon's nucleus is bigger than carbon.silicon loses electrons easily than carbon.
Since the volume is constant,
p1/t = p2/ t
210/120 = p2/150
p2= 262.5kpa