Let's investigate the substances involved in the reaction first. The compound <span>CH3NH3+Cl- is a salt from the weak base CH3NH2 and the strong acid HCl. When this salt is hydrated with water, it will dissociate into CH3NH2Cl and H3O+:
CH3NH3+Cl- + H2O </span>⇒ CH3NH2Cl + H3O+
Nest, let's apply the ICE(Initial-Change-Equilibrium) table where x is denoted as the number of moles used up in the reaction:
CH3NH3+Cl- + H2O ⇒ CH3NH2Cl + H3O+
Initial 0.51 0 0
Change -x +x +x
-------------------------------------------------------------------------------
Equilibrium 0.51 - x x x
Then, let's find the equilibrium constant of the reaction. Since the reaction is hydrolysis we use KH, which is the ratio of Kw to Ka or Kb. Kw is the equilibrium constant for water hydrolysis which is equal to 1×10⁻¹⁴. Since the salt comes from the weak base, we use Kb. Since pKb = 3.44, then. 3.44 = -log(Kb). Thus, Kb = 3.6307×10⁻⁴
KH = Kw/Kb = (x)(x)/(0.51 - x)
1×10⁻¹⁴/ 3.6307×10⁻⁴ = x²/(0.51-x)
x = 3.748×10⁻⁶
Since x from the ICE table is equal to the equilibrium concentration of H+, we can find the pH of the aqueous solution:
pH = -log(H+) = -log(x)
pH = -log ( 3.748×10⁻⁶)
pH = 5.43
Magnetism, or more specifically electromagnetic repulsion
Answer:
%
%
%
%
Explanation:
If we know the grams of a chemical compound in a specific reaction, it is possible to know the percentage of each atom that composes it.
For the Aluminum Oxide in this problem, we know its total weight and the grams of each component.
therefore we can determine the percentage ratio of its components through:
For Al
%
%
%
%
%
%
In the same way for oxygen
%
%
%
%
%
%
Answer:
<h2>4 A</h2>
Explanation:
The magnitude of the current can be found by using the formula

v is the voltage
r is the resistance
From the question we have

We have the final answer as
<h3>4 A</h3>
Hope this helps you