solution:
You need to find the frequency, and they have already given you the wavelength. And since you already know the speed of light, you can use formula (2) to answer this problem. Remember to convert the nano meters to meters because the speed of light is in meters. 

The volume of the 0.279 M Ca(OH)₂ solution required to neutralize 24.5 mL of 0.390 M H₃PO₄ is 51.4 mL
<h3>Balanced equation </h3>
2H₃PO₄ + 3Ca(OH)₂ —> Ca₃(PO₄)₂ + 6H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 2
- The mole ratio of the base, Ca(OH)₂ (nB) = 3
<h3>How to determine the volume of Ca(OH)₂ </h3>
- Molarity of acid, H₃PO₄ (Ma) = 0.390 M
- Volume of acid, H₃PO₄ (Va) = 24.5 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.279 M
- Volume of base, Ca(OH)₂ (Vb) =?
MaVa / MbVb = nA / nB
(0.39 × 24.5) / (0.279 × Vb) = 2/3
9.555 / (0.279 × Vb) = 2/3
Cross multiply
2 × 0.279 × Vb = 9.555 × 3
0.558 × Vb = 28.665
Divide both side by 0.558
Vb = 28.665 / 0.558
Vb = 51.4 mL
Thus, the volume of the Ca(OH)₂ solution needed is 51.4 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
5
Explanation:
they are all significant All non-zero numbers ARE significant
When oxygen is found is peroxide, it has an oxidation number of -1.
The chemical formula of hydrogen peroxide is H2O2. We know that hydrogen always has +1 oxidation state until it forms metal hydrides. So in H2O2, the oxidation state ofhydrogen is +1.
Now, let oxidation state of oxygen be x. So,
2 * (+1) + 2*x = 0
2 + 2x = 0
2x = -2
x = -2 / 2
x = -1
Hence, the oxidation number of oxygen in peroxides is -1
Answer:

Explanation:
Hello!
In this case, since the molarity of a solution is calculated by diving the moles of solute by the volume of solution in liters, we first compute the moles of barium hydroxide in 35.5 g as shown below:

Then, the liters of solution:

Finally, the molarity turns out:

Best regards!