Answer:
2-4 mm height of capillary tube.
Explanation:
Sample should be around 2-4 mm in height.
It should be packed well so that it does not have air packets that caues the lowering of melting point.
If you take greater amount, then there will be needed more heat, resulting a wide range of melting point.
Answer: The net change in the atoms is the conversion of a neutron to a proton, turning Carbon (6 protons) into Nitrogen (7 protons).
Explanation:
Carbon-14, generated from the atmosphere, has 6 protons and 8 neutrons. That's where the 14 comes from, called the mass number, is the sum of protons and neutrons (6+8=14).
Carbon-14 is radioactive and decays by beta decay. That means one of its neutrons spontaneously turns into a proton, an electron, and a neutrino, according to:

After that, the atom has 7 protons and 7 neutrons, maintaining its mass number but changing its atomic number from 6 to 7, turning into Nitrogen.
they pair up with other bases to make up the rungs of the DNA ladder
The dichloromethane (DCM) has less density than water and also the polarity of water is much more than DCM. So the mixture of water and dichloromethane will always be a heterogeneous mixture. In the mixture dichloromethane will be always up of the water layer. The volume of the separatory funnel which contains the mixture of DCM and water must have to be more than the total volume of the liquids thus the volume of the funnel will be more than (50+50) = 100mL.
The caution have to consider during the separation are-
1. The separatory funnel have to shake well with lid and have to settle down for some times until the two liquid separated.
2. The lid should be open very slowly as the vapor pressure of DCM is more and it will float on the water.
3. After this the stopcock should be opened and slowly the water will come out first followed by DCM.
Answer:
High temperature and low pressure
Explanation:
According to the kinetic molecular theory, gases are composed of small particles called molecules which are in constant motion.
At high temperature and low pressure, gas molecules possess high kinetic energy and move at high velocities hence intermolecular interaction is almost none existent and real gases approach the behavior of ideal gases.