You can put a known amount sodium into some sort of time release mechanism such as a pill made from soluble material. Then you can place the sodium into a calorimeter with a known mass of water and record the temperature change the water undergoes during the reaction. Then you can use the equation q(water)=m(water)c(water)ΔT to find the amount of heat absorbed by the water. since the amount of heat absorbed by the water is the amount of heat released from the sodium, q(sodium)=-q(water). Than you can use the equation q(sodium)=m(sodium)c(sodium)ΔT and solve for c(sodium)
I hope this helps and feel free to ask about anything that was unclear in the comments.
Answer:
Lithium fluoride i think but I am not really sure
But it should be Lithium fluoride
Explanation: that's because neighter boron nor nitrogen contains water
The question ask for the percentage of the abundance of galium-69 where there is two isotopes of galium: the 69Ga and the 71Ga. The average atomic mass of gallium is 69.723 amu. So the formula would be <span>69.723amu=(%x)∗(68.926amu)+(1−%x)∗(70.025amu) and the answer to this is 1.58%</span>
A.
Elements in the same group have similar properties.
B.
The similarity in their properties arises from the fact that they have an equal number of valence shell electrons.
C.
Fluorine, Chlorine, Bromine