We first assume that this gas is an ideal gas where it follows the ideal gas equation. The said equation is expressed as: PV = nRT. From this equation, we can predict the changes in the pressure, volume and temperature. If the volume and the temperature of this gas is doubled, then the pressure still stays the same.
This isn't chemistry at all, but the Mormons are called the Church of Jesus Christ of Latter-Day Saints.
Given:
0.060 mol of NiC2O4
Ksp = 4 x 10⁻¹⁰
1.0 L of solution
Kf of Ni(NH3)6 2⁺ = 1.2 x 10⁹
<span>NiC2O4 + 6NH3 ⇋ Ni(NH3)6 2+ + 2O4 2- </span>
<span>NiC2O4 ⇋ Ni 2+ + C2O4 2- ...Ksp </span>
<span>Ni2+ + 6NH3 ⇋ Ni(NH3)6 2+...Kf </span>
Ksp * Kf = (4 x 10⁻¹⁰) * (1.2 x 10⁹) = 0.48
K = 0.48 = [Ni(NH3)6 2+][C2O4 2-] / [NH3]⁶<span>
</span>0.48 = (0.060)² / [NH3]⁶<span> ... (dissolved C2O4 2- = 0.060M)
</span><span>[NH3]</span>⁶<span> = (0.060)</span>²<span> / 0.48 = </span>0.0036 / 0.48 = 0.0075
NH3 = ⁶√0.0075
NH3 = 0.44 M
The new volume if the balloon is cooled at constant pressure is 3.98 L.
Charles's law, states that the volume occupied by a fixed amount of gas is directly proportional to its absolute temperature if the pressure remains constant.
The new volume is calculated using the Charles law formula
V₁ / T₁ = V₂ / T₂
where,
V₁ = The initial volume of air = 4.24 l
T₁ = 23.00 °C into kelvin = 23 +273 =296 K
T₂ = 5.00 °C into kelvin = 5.00 + 273 = 278 K
V₂ = ?
By making V₂ subject the subject of the formula by multiplying both sides by T₂
V₂ = ( V₁ × T₂ ) / T₁
V₂ = (4.24 L × 278 K) / 296 k
= 3.98 L
Therefore, the new volume, if the balloon is cooled at constant pressure, is 3.98 L.
An air-filled balloon will contract when chilled and expand when heated. This occurs because the gas that makes up the air within the balloon expands when it is warm and contracts when it is cool.
Learn more about Charles law here:
brainly.com/question/14842720
#SPJ4
Letter D. ☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺