The regression equation for the data given is y= -8.57 -2.31x
Step-by-step explanation:
The first step is to form a table as shown below;
x y xy x² y²
1 4 4 1 16
2 1 2 4 1
3 5 15 9 25
4 10 40 16 100
5 16 80 25 256
6 19 114 36 361
7 15 105 49 225
28 60 360 140 984 ------sum
A linear regression equation is in the form of y=A+Bx
where ;
x=independent variable
y=dependent variable
n=sample size/number of data points
A and B are constants that describe the y-intercept and the slope of the line
Calculating the constants;
A=(∑y)(∑x²) - (∑x)(∑xy) / n(∑x²) - (∑x)²
A=(60)(140) - (28)(360) / 7(140)-(28)²
A=8400 - 10080 /980-784
A= -1680/196
A= - 8.57
B= n(∑xy) - (∑x) (∑y) / n(∑x²) - (∑x)²
B= 7(360)-(28)(60) / 7(60) - (28)²
B=2520 - 1680 /420-784
B=840/-364
B= -2.31
y=A+Bx
y= -8.57 -2.31x
Learn More
Regression equation :brainly.com/question/12280902
Keywords : equations, regression line, data
#LearnwithBrainly
Answer:
No
Step-by-step explanation:
Complex answer: For a point to be in quadrant II, it must have a negative x value and a positive y value.
Simple answer: The 1 would have to be negative to be in quadrant II, and it isn't
Answer:
A. the difference of two squares
Step-by-step explanation:
Please use the symbol " ^ " to indicate exponentiation.
Then we have x^2 - 11^2, which is the difference of two squares:
x^2 is a square, the square of x; and 11^2 is a square, the square of 11.
A. the difference of two squares
Note that a "difference of squares" is easily factored:
a² - b² = (a - b)(a + b)
and so your x² - 11² factors as follows: (x - 11)(x + 11)
Hi! I'm happy to help!
Our total line is JL (4x), and it is split into two parts: JK, and KL. We have our values, and we know that JK+KL=JL, so we can substitute our values and solve for x:
4x=(2x+3)+(x)
4x=3x+3
To solve for x, we have to isolate it on one side of the equation.
First, let's subtract 3x from both sides so that we can isolate x:
4x=3x+3
-3x -3x
x=3
<u>So, our x=3, which means that KL=3.</u>
I hope this was helpful, keep learning! :D
Let the number of large bookcases be x and number of small bookcases be y, then
Maximise P = 80x + 50y;
subkect to:
6x + 2y ≤ 24
x, y ≥ 2
The corner points are (2, 2), (2, 6), (3.333, 2)
For (2, 2): P = 80(2) + 50(2) = 160 + 100 = 260
For (2, 6): P = 80(2) + 50(6) = 160 + 300 = 460
For (3.333, 2): P = 80(3.333) + 50(2) = 266.67 + 100 = 366.67
Therefore, for maximum profit, he should produce 2 large bookcases and 6 small bookcases.