Answer:
9-10 ppm.
0.2-0.4 ppm.
Explanation:
The proton on the aldehyde group will appear at approximately 9-10 ppm whereas the methylene peak on the alcohol is the only peak 0.2-0.4 ppm for either compound. Aldehydes and aromatics are quite distinctive in the Nuclear magnetic resonance (NMR). Aldehydes show up from 9-10 ppm, usually as a small singlet; aromatic protons show up from 6.5-8.5 ppm. NMR spectroscopy is the use of NMR to study the physical, chemical, and biological properties of matter.
The final destination to where some of the electrons go to at the end of cellular respiration would be D. Oxygen. Assuming that this aerobic cellular respiration, the final electron acceptor is that of oxygen.
It would be 3C + 4H2 -> C3H8
<u>Answer:</u>
<u>For A:</u> The average molecular speed of Ne gas is 553 m/s at the same temperature.
<u>For B:</u> The rate of effusion of
gas is 
<u>Explanation:</u>
<u>For A:</u>
The average molecular speed of the gas is calculated by using the formula:

OR

where, M is the molar mass of gas
Forming an equation for the two gases:
.....(1)
Given values:

Plugging values in equation 1:

Hence, the average molecular speed of Ne gas is 553 m/s at the same temperature.
<u>For B:</u>
Graham's law states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass of the gas. The equation for this follows:

Where, M is the molar mass of the gas
Forming an equation for the two gases:
.....(2)
Given values:

Plugging values in equation 2:

Hence, the rate of effusion of
gas is 