1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
2 years ago
13

A) The average molecular speed in a sample of Ar gas at a certain temperature is 391 m/s. The average molecular speed in a sampl

e of Ne gas is ______ m/s at the same temperature.
B) The rate of effusion of Xe gas through a porous barrier is observed to be 7.03×10-4 mol / h. Under the same conditions, the rate of effusion of SO2 gas would be ______ mol / h
Chemistry
1 answer:
diamong [38]2 years ago
8 0

<u>Answer:</u>

<u>For A:</u> The average molecular speed of Ne gas is 553 m/s at the same temperature.

<u>For B:</u> The rate of effusion of SO_2 gas is 1.006\times 10^{-3}mol/hr

<u>Explanation:</u>

<u>For A:</u>

The average molecular speed of the gas is calculated by using the formula:

V_{gas}=\sqrt{\frac{8RT}{\pi M}}

     OR

V_{gas}\propto \sqrt{\frac{1}{M}}

where, M is the molar mass of gas

Forming an equation for the two gases:

\frac{V_{Ar}}{V_{Ne}}=\sqrt{\frac{M_{Ne}}{M_{Ar}}}          .....(1)

Given values:

V_{Ar}=391m/s\\M_{Ar}=40g/mol\\M_{Ne}=20g/mol

Plugging values in equation 1:

\frac{391m/s}{V_{Ne}}=\sqrt{\frac{20}{40}}\\\\V_{Ne}=391\times \sqrt{2}=553m/s

Hence, the average molecular speed of Ne gas is 553 m/s at the same temperature.

<u>For B:</u>

Graham's law states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass of the gas. The equation for this follows:

Rate\propto \frac{1}{\sqrt{M}}

Where, M is the molar mass of the gas

Forming an equation for the two gases:

\frac{Rate_{SO_2}}{Rate_{Xe}}=\sqrt{\frac{M_{Xe}}{M_{SO_2}}}          .....(2)

Given values:

Rate_{Xe}=7.03\times 10^{-4}mol/hr\\M_{Xe}=131g/mol\\M_{SO_2}=64g/mol

Plugging values in equation 2:

\frac{Rate_{SO_2}}{7.03\times 10^{-4}}=\sqrt{\frac{131}{64}}\\\\Rate_{SO_2}=7.03\times 10^{-4}\times \sqrt{\frac{131}{64}}\\\\Rate_{SO_2}=1.006\times 10^{-3}mol/hr

Hence, the rate of effusion of SO_2 gas is 1.006\times 10^{-3}mol/hr

You might be interested in
Yo yuh guys know this
erastovalidia [21]

Answer:80KM is distance. 30KM north is displacement.

Explanation:

8 0
2 years ago
What happens when two hydrogen atoms enter the ETS as part of either NADH or FADH2? Two hydrogen and one oxygen react to form a
gtnhenbr [62]
I think the correct answer from the choices listed above is the second option. When two hydrogen atoms enter the ETS as part of either NADH or FADH2, the two hydrogen atoms are split into two H+ and two electrons. Hope this answers the questions.
7 0
3 years ago
Read 2 more answers
How many climates does Australia have
zalisa [80]
Australia has 4 climates

8 0
3 years ago
Read 2 more answers
Describe differences between conduction and convection give examples
nevsk [136]

Explanation:

Both conduction and convection are both forms of heat transfer from one place to another.

  • In conduction, there must be contact between two bodies for the process to take place but in convection, the matter moves to transfer heat.
  • Conduction mostly occurs in solid substances whereas convection occurs mostly in fluids.
  • Heat transfer in conduction is quite slow compared to convection which is much faster.

Example of conduction is heating of iron pot when cooking

Example of convection is the refrigerating system.

4 0
3 years ago
Instructions
ivann1987 [24]

Answer:

I got a 100 with this, sorry if this is not what you want just trying to help

Explanation:

1. This experiment was to find how mass and speed effect KE. This is important because if you were in a situation where you needed something to go higher, you would know to add more or less of mass/speed.  

To test mass, we filled the bean bag with a certain amount of water, then dropped it. After, you recorded how high it made the bean bag go. The same with speed, but same amount in the bottle, just dropped from different heights.  

My hypothesis is when you have more mass, the KE will be greater. This is also the same with speed, if it is dropped from a higher place, the bean bag will launch farther than the last time.  

2. Data I collected from the lab was like my hypothesis explained. When the height of the bottle increased, it made the bean bag go higher than the last. And I tested 4 different masses, 0.125 kg, 0.250kg, 0.375kg and 0.500kg. Each time the bean bag went higher on a larger mass.  

A lot of times on the speed test, the bean bag would go higher than the bottle drop point, but not every time. Also, when it was dropped from the same height each time, some results varied quite a bit, like when it was dropped from 1.28 the results were 1.14 then 1.30 1.30. Mass on the other hand was all in the same number range, only once the numbers were a bit off from each other.  

3.  Some formulas I used were KE= ½ mv^2 and Ht v^2/2g. The first was to calculate the kinetic energy of an object, m=mass v=speed. Second was for finding out what height I needed to drop something to reach a certain speed, Ht=Height and g= Gravitational Acceleration of 9.8 m/s^2.  

I used these to figure out tables that showed relationships between different things like mass and KE or speed and height. The whole time I was doing the lab, my data was going up, when there was more mass/speed there were higher values in the table.  

This means that my hypothesis at the beginning was correct, more of m/s means KE will increase proportionally because they are all linear. I found it surprising when the bean bag height went over the water bottle drop mark.  

4.     To conclude, my hypothesis matched my data. The data values went up when more mass or speed was added. This means if I were in a situation where I needed more kinetic energy for something, I would know to increase mass or the speed of the object giving it energy.  

The reason that this hypothesis is correct is when you have more mass, you have more energy. So, when you drop let's say a baseball, it isn’t that heavy so it would only launch the bean bag so far. But a bowling ball is very heavy and has lots of energy when falling because of that, it would make the bean bag go very high.  

To make this experiment better, I would use a smoother material for the lever so energy wouldn’t be lost by friction from wood rubbing together. Also, maybe a scanner or video camera to more accurately record how far the bean bag went. All of these would help the lab get more precise results, maybe they could be used in a future lab.

8 0
3 years ago
Other questions:
  • HURRY I WILL GRANT 100 PTS AND BRAINLIEST
    12·1 answer
  • Which statement most accurately compares the temperature of the core of the sun to its surface
    8·1 answer
  • It is always important to do what prior to using your triple beam balance
    10·1 answer
  • Where is pollen produced
    6·2 answers
  • 4. Plants use energy from sunlight, water, and carbon dioxide to produce sugar. Which structure is found only in plant cells and
    10·1 answer
  • Did the addition of salt change a physical or chemical property of water?
    12·1 answer
  • 7th grade science !!<br> I have to write a claim, evidence and reasoning
    9·1 answer
  • What is heat energy
    7·2 answers
  • Which of the following components does a disc brake system use?
    5·2 answers
  • Which of the following is the best way to
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!