Answer:
the unknown angle is 88°
Step-by-step explanation:
the exterior angle of a triangle is equal to the sum of the opposite interior angles. Therefore, in the tall triangle, 60 + 40 = 100, meaning the bottom left angle in the small triangle is 100-64=36. And b/c angle sum of a triangle is 180°, 180-36-56=88°
X/2-y/3=3/2
(6×x/2)-(6×y/3)=6×3/2
3x-2y=9______(1)
x/3+y/2=16/3
(6×x/3)+(6×y/2)=6×16/3
2x+3y=32_____(2)
(1)×3____9x-6y=27____(3)
(2)×2____4x+6y=64____(4)
(3)+(4)___13x=91
x=7
3(7)-2y=9
-2y=-12
y=6
It starts becoming bigger :)
Answer:
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
The sketch is drawn at the end.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 0°C and a standard deviation of 1.00°C.
This means that 
Find the probability that a randomly selected thermometer reads between −2.23 and −1.69
This is the p-value of Z when X = -1.69 subtracted by the p-value of Z when X = -2.23.
X = -1.69



has a p-value of 0.0455
X = -2.23



has a p-value of 0.0129
0.0455 - 0.0129 = 0.0326
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
Sketch: