Answer : The concentration of a solution with an absorbance of 0.460 is, 0.177 M
Explanation :
Using Beer-Lambert's law :
where,
A = absorbance of solution
C = concentration of solution
l = path length
= molar absorptivity coefficient
From this we conclude that absorbance of solution is directly proportional to the concentration of solution at constant path length.
Thus, the relation between absorbance and concentration of solution will be:
Given:
= 0.350
= 0.460
= 0.135 M
= ?
Now put all the given values in the above formula, we get:
Therefore, the concentration of a solution with an absorbance of 0.460 is, 0.177 M
Answer:
The first is the empirical formula which shows you the number of different atoms in the compound. After you convert the grams of each element into moles, you calculate the ratio of the moles, which gives you the ratio of the elements in the compound. More number-crunching gives you the molecular formula.
First, we need to calculate the principal quantum number n for this electron, using the equation:
E = (-13.60 eV) / (n x n)
where E is the energy that is used to bound the electron (here, E = - 0.544 eV).
- 0.544 eV = (-13.60 eV) / (n x n)
n x n = (- 13.60 eV) / (- 0.544 eV)
n x n = 25
n = 5
The orbital radius that is equal to the radius of a hydrogen atom is calculated using the equation:
r = 0.053 nm x n x n
r = 0.053 nm x 5 x 5
r = 0.053 nm x 25
r = 1.325 nm
Answer: False
Explanation:
AC change directions and DC only flow in one direction